Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Polycyclic aromatic hydrocarbons (PAHs) are semivolatile organic compounds of environmental concern. This study aims to investigate the influence of local sources of anthropogenic PAHs and their air-water exchange fluxes in an oligotrophic North-Patagonian lake in Chile. The monitoring was carried out in Panguipulli Lake during a six-month period during the autumn and winter seasons (March to August 2017) using a high-volume air sampler and a pump system for water samples. We detected and quantified fifteen PAHs in the gas phase (mean ∑PAHs = 11.6 ng m) and dissolved water phase (mean ∑PAHs = 961.8 pg L). Methylphenanthrenes and pyrene dominated the concentrations of PAHs in the studied phases. To determine sources of PAHs we used the PAH ratios of Light Molecular Weight/Heavy Molecular Weight (∑LMW/∑HMW) and Phenanthrene/Anthracene (Phe/Ant). The PAH ratio results revealed a pyrogenic source. We estimated the air-water diffusive exchange fluxes and fugacity ratios for the studied compounds. In general, air-water diffusive exchanges of PAHs showed a net volatilization for the less hydrophobic (log K < 4) and lighter PAHs (MW ≤ 170 g mol), and a net deposition trend for the more hydrophobic (log K 4-7) and higher molecular weight PAHs (MW ≥ 178 g mol). We found a significant correlation between log water/air fugacity ratios and log K of PAHs. Therefore, it is suggested that this oligotrophic lake acts as a sink by accumulating hydrophobic and mid-high molecular weight PAHs derived mainly from pyrogenic sources. This study is the first attempt to understand the sources and behavior of PAHs in oligotrophic lakes in the Southern Chile where information is scarce regarding the occurrence of PAHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.139838 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!