Predominant role of soil moisture in regulating the response of ecosystem carbon fluxes to global change factors in a semi-arid grassland on the Loess Plateau.

Sci Total Environ

Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA. Electronic address:

Published: October 2020

Climate warming, altered precipitation and nitrogen deposition may critically affect plant growth and ecosystem carbon fluxes. However, the underlying mechanisms are not fully understood. We conducted a 2-yr, multi-factor experiment (warming (W), altered precipitation (+30% and - 30%) and nitrogen addition (N)) in a semi-arid grassland on the Loess Plateau to study how these factors affect ecosystem carbon fluxes. Surprisingly, no interactive effects of warming, altered precipitation and nitrogen addition were detected on parameters of ecosystem carbon fluxes, including net ecosystem CO exchange (NEE), ecosystem respiration (ER), gross ecosystem productivity (GEP) and soil respiration (SR). Warming marginally reduced NEE and GEP mainly due to its negative effects on them in July and August. Altered precipitation significantly affected all parameters of carbon fluxes with precipitation reduction decreasing NEE, ER and GEP, whereas precipitation addition increasing SR. In contrast, nitrogen addition had little effect on any parameters of carbon fluxes. Soil moisture was the most important driver and positively correlated with ecosystem carbon fluxes and warming impacted ecosystem carbon fluxes indirectly by decreasing soil moisture. While plant community cover did not show significant association with carbon fluxes, semi-shrubs cover was positively related to NEE, ER and GEP. Together, these results suggest that soil water availability, rather than soil temperature and nitrogen availability, may dominate the effect of the future multi-faceted global changes on semi-arid grassland carbon fluxes on the Loess Plateau.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139746DOI Listing

Publication Analysis

Top Keywords

carbon fluxes
40
ecosystem carbon
24
altered precipitation
16
soil moisture
12
semi-arid grassland
12
loess plateau
12
warming altered
12
nitrogen addition
12
nee gep
12
carbon
10

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!