It is highly desirable to develop efficient and cost-effective composite catalysts to replace noble metal Pt for hydrogen evolution reaction (HER). For an excellent HER catalyst, both the adsorption and desorption of intermediate H atoms on it should be easy. However, except metal platinum, most individual species cannot satisfy this requirement. Fe-B is an active HER catalyst with strong ability to adsorb H atoms. In our previous work, we found that when Fe-B alloy was decorated with metal Fe particles (Fe-B@Fe), the resultant composite displayed a significant synergic effect for HER compared to single Fe-B and Fe. The role of the decorated Fe on Fe-B is to improve H desorption. Because the desorption of H molecule from Ni is easier than from Fe, we expect Fe-B@Ni to be a more efficient HER catalyst than Fe-B@Fe. Herein, we transform Fe-B@Fe into Fe-B@Ni by a facile displacement reaction. As a proof of concept, the as-prepared Fe-B@Ni catalyst exhibits much higher electrocatalytic and photocatalytic activity for hydrogen production than the pristine Fe-B@Fe. At the current density of -100 mA cm, the overpotential of Fe-B@Ni in 1.0 mol L KOH is close to that of 20 wt% Pt/C. The highest apparent quantum yield (AQY) for dye-sensitized photocatalytic hydrogen evolution reaches 51% at 420 nm. The possible mechanisms have been proposed. These findings provide new insights for designing and fabricating new HER composite catalysts for electrocatalytic and photocatalytic hydrogen evolution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.05.124 | DOI Listing |
Sci Adv
January 2025
School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Metal single atoms are of increasing importance in catalytic reactions. However, the mass diffusion is yet substantially limited by the confined surface of the support in comparison to homogeneous catalysis. Here, we demonstrate that cylindrical micellar brushes with highly solvated poly(2-vinylpyridine) coronas can immobilize 33 types of metal single atoms with 8.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California, 95064, USA.
Development of high-performance electrocatalysts for water splitting is crucial for a sustainable hydrogen economy. In this study, rapid heating of ruthenium(III) acetylacetonate by magnetic induction heating (MIH) leads to the one-step production of Ru-RuO₂/C nanocomposites composed of closely integrated Ru and RuO₂ nanoparticles. The formation of Mott-Schottky heterojunctions significantly enhances charge transfer across the Ru-RuO interface leading to remarkable electrocatalytic activities toward both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore.
Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, Alabama 35487, United States.
We report a Tuning Fork Scanning Electrochemical Cell Microscopy (TF-SECCM) technique for providing morphological and electrochemical information on single redox-active entities. This new operation configuration of SECCM utilizes an electrolyte-filled nanopipette tip mounted onto a tuning fork force sensor to obtain a precise tip-sample distance control and surface morphological mapping capabilities. Redox activities of regions of interest (ROIs) can be investigated by scanning electrode potential by moving the nanopipette to any target regions while maintaining the constant force engagement of the tip with the sample.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key (Guangdong-Hong Kong Joint) Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemical and Chemical Engineering, Shantou University, Shantou, 515041, P. R. China.
RuO-based materials are considered an important kind of electrocatalysts on oxygen evolution reaction and water electrolysis, but the reported discrepancies of activities exist among RuO electrocatalysts prepared via different processes. Herein, a highly efficient RuO catalysts via a facile hydrolysis-annealing approach is reported for water electrolysis. The RuO catalyst dealt with at 200 °C (RuO-200) performs the highest activities on both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in acid with overpotentials of 200 mV for OER and 66 mV for HER to reach a current density of 100 mA cm as well as stable operation for100 h.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!