Observed multiple adverse effects of livestock production have led to increasing calls for more sustainable livestock production. Quantitative analysis of adverse effects, which can guide public debate and policy development in this area, is limited and generally scattered across environmental, human health, and other science domains. The aim of this study was to bring together and, where possible, quantify and aggregate the effects of national-scale livestock production on 17 impact categories, ranging from impacts of particulate matter, emerging infectious diseases and odor annoyance to airborne nitrogen deposition on terrestrial nature areas and greenhouse gas emissions. Effects were estimated and scaled to total Dutch livestock production, with system boundaries including feed production, manure management and transport, but excluding slaughtering, retail and consumption. Effects were expressed using eight indicators that directly express Impact in the sense of the Drivers-Pressures-State-Impact-Response framework, while the remaining 14 express Pressures or States. Results show that livestock production may contribute both positively and negatively to human health with a human disease burden (expressed in disability-adjusted life years) of up to 4% for three different health effects: those related to particulate matter, zoonoses, and occupational accidents. The contribution to environmental impact ranges from 2% for consumptive water use in the Netherlands to 95% for phosphorus transfer to soils, and extends beyond Dutch borders. While some aggregation across impact categories was possible, notably for burden of disease estimates, further aggregation of disparate indicators would require normative value judgement. Despite difficulty of aggregation, the assessment shows that impacts receive a different contribution of different animal sectors. While some of our results are country-specific, the overall approach is generic and can be adapted and tuned according to specific contexts and information needs in other regions, to allow informed decision making across a broad range of impact categories.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139702DOI Listing

Publication Analysis

Top Keywords

livestock production
24
human health
12
impact categories
12
dutch livestock
8
adverse effects
8
particulate matter
8
effects
7
production
7
livestock
6
impact
5

Similar Publications

Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.

View Article and Find Full Text PDF

Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe.

View Article and Find Full Text PDF

(1) Background: Surra is a debilitating disease of wild and domestic animals caused by (), resulting in significant mortality and production losses in the affected animals. This study is the first to assess the genetic relationships of in naturally affected buffaloes from Multan district, Pakistan, using ITS-1 primers and evaluating the effects of parasitemia and oxidative stress on DNA damage and hematobiochemical changes in infected buffaloes. (2) Methods: Blood samples were collected from 167 buffaloes using a multi-stage cluster sampling strategy, and trypomastigote identification was performed through microscopy and PCR targeting RoTat 1.

View Article and Find Full Text PDF

Advancing Food Security with Farmed Edible Insects: Economic, Social, and Environmental Aspects.

Insects

January 2025

Protein Chemistry and Bioactive Peptides Laboratory, Purdue University, 745 Agriculture Mall, West Lafayette, IN 47907, USA.

Farmed edible insects are considered a potential resource to help address food security concerns toward the year 2050. The sustainability (e.g.

View Article and Find Full Text PDF

Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!