Organ-on-chip technology is a promising tool for investigating physiological in vitro responses in drug screening development, and in advanced disease models. Within this framework, we investigated the behavior of rat islets of Langerhans in an organ-on-chip model. The islets were trapped by sedimentation in a biochip with a microstructure based on microwells, and perfused for 5 days of culture. The live/dead assay confirmed the high viability of the islets in the biochip cultures. The microfluidic culture leads to upregulation of mRNA levels of important pancreatic islet genes: Ins1, App, Insr, Gcgr, Reg3a and Neurod. Furthermore, insulin and glucagon secretion were higher in the biochips compared to the Petri conditions after 5 days of culture. We also confirmed glucose-induced insulin secretion in biochips via high and low glucose stimulations leading to high/low insulin secretion. The high responsiveness of the pancreatic islets to glucagon-like peptide 1 (GLP-1) stimulation in the biochips was reflected by the upregulation of mRNA levels of Gcgr, Reg3a, Neurog3, Ins1, Ins2, Stt and Glp-1r and by increased insulin secretion. The results obtained highlighted the functionality of the islets in the biochips and illustrated the potential of our pancreas-on-chip model for future pancreatic disease modeling and anti-diabetic drugs screening.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mce.2020.110892 | DOI Listing |
J Clin Transl Endocrinol
December 2024
Division of Endocrinology Diabetes and Metabolism, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
Cystic fibrosis-related diabetes (CFRD) is the most common non-pulmonary comorbidity in people with cystic fibrosis (CF). Current guidelines recommend insulin therapy as the treatment of choice for people with CFRD. In the past, obesity and overweight were uncommon in individuals with CF.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Department of Psychology, University of Miami, Coral Gables, FL, United States.
The neuropeptide oxytocin (OXT) and its receptor (OXTR) have been shown to play an important role in glucose metabolism, and pancreatic islets express this ligand and receptor. In the current study, OXTR expression was identified in α-, β-, and δ-cells of the pancreatic islet by RNA hybridization, and OXT protein expression was observed only in β-cells. In order to examine the contribution of islet OXT/OXTR in glycemic control and islet β-cell heath, we developed a β-cell specific OXTR knock-out (β-KO) mouse.
View Article and Find Full Text PDFDuring type 1 diabetes (T1D) progression, beta cells become dysfunctional and exhibit reduced first-phase insulin release. While this period of beta cell dysfunction is well established, its cause and underlying mechanism remain unknown. To address this knowledge gap, live human pancreas tissue slices were prepared from autoantibody- negative organ donors without diabetes (ND), donors positive for one or more islet autoantibodies (AAb+), and donors with T1D within 0-4 years of diagnosis (T1D+).
View Article and Find Full Text PDFDiabetes is associated with the dysfunction of glucagon-producing pancreatic islet α-cells, although the underlying mechanisms regulating glucagon secretion and α-cell dysfunction remain unclear. While insulin secretion from pancreatic β-cells has long been known to be partly controlled by intracellular phospholipid signaling, very little is known about the role of phospholipids in glucagon secretion. Here we show that TMEM55A, a lipid phosphatase that dephosphorylates phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-5-phosphate (PI5P), regulates α-cell exocytosis and glucagon secretion.
View Article and Find Full Text PDFHuman endocrine cell differentiation and islet morphogenesis play critical roles in determining islet cell mass and function, but the events and timeline of these processes are incompletely defined. To better understand early human islet cell development and maturation, we collected 115 pediatric pancreata and mapped morphological and spatiotemporal changes from birth through the first ten years of life. Using quantitative analyses and a combination of complementary tissue imaging approaches, including confocal microscopy and whole-slide imaging, we developed an integrated model for endocrine cell formation and islet architecture, including endocrine cell type heterogeneity and abundance, endocrine cell proliferation, and islet vascularization and innervation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!