Bulk and single-cell gene expression analyses reveal aging human choriocapillaris has pro-inflammatory phenotype.

Microvasc Res

Department of Ophthalmology and Visual Sciences, the University of Iowa Carver College of Medicine, Iowa City, IA 52242, United States of America; Institute for Vision Research, the University of Iowa, Iowa City, IA 52242, United States of America. Electronic address:

Published: September 2020

The human choroidal vasculature is subject to age-related structural and gene expression changes implicated in age-related macular degeneration (AMD). In this study, we performed both bulk and single-cell RNA sequencing on infant (n = 4 for bulk experiments, n = 2 for single-cell experiments) and adult (n = 13 for bulk experiments, n = 6 for single-cell experiments) human donors to characterize how choroidal gene expression changes with age. Differential expression analysis revealed that aged choroidal samples were enriched in genes encoding pro-inflammatory transcription factors and leukocyte transendothelial cell migration adhesion proteins. Such genes were observed to be differentially expressed specifically within choroidal endothelial cells at the single-cell level. Immunohistochemistry experiments support transcriptional findings that CD34 is elevated in infant choriocapillaris endothelial cells while ICAM-1 is enriched in adults. These results suggest several potential drivers of the pro-inflammatory vascular phenotype observed with advancing age.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396301PMC
http://dx.doi.org/10.1016/j.mvr.2020.104031DOI Listing

Publication Analysis

Top Keywords

gene expression
12
bulk single-cell
8
expression changes
8
bulk experiments
8
single-cell experiments
8
endothelial cells
8
experiments
5
bulk
4
single-cell gene
4
expression
4

Similar Publications

Background: Bioinformatics analysis of hepatocellular carcinoma (HCC) expression profiles can aid in understanding its molecular mechanisms and identifying new targets for diagnosis and treatment.

Aim: In this study, we analyzed expression profile datasets and miRNA expression profiles related to HCC from the GEO using R software to detect differentially expressed genes (DEGs) and differentially expressed miRNAs (DEmiRs).

Methods And Results: Common DEGs were identified, and a PPI network was constructed using the STRING database and Cytoscape software to identify hub genes.

View Article and Find Full Text PDF

Effects of miRNAs in inborn error of metabolism and treatment strategies.

Postgrad Med J

January 2025

Department of Pediatric Metabolic Diseases, University of Health Sciences, Ankara Etlik City Hospital, Ankara 06170, Turkey.

Metabolism is the name given to all of the chemical reactions in the cell involving thousands of proteins, including enzymes, receptors, and transporters. Inborn errors of metabolism (IEM) are caused by defects in the production and breakdown of proteins, fats, and carbohydrates. Micro ribonucleic acids (miRNAs) are short non-coding RNA molecules, ⁓19-25 nucleotides long, hairpin-shaped, produced from DNA.

View Article and Find Full Text PDF

Impact of LITAF on Mitophagy and Neuronal Damage in Epilepsy via MCL-1 Ubiquitination.

CNS Neurosci Ther

January 2025

Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.

Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.

Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Knockout of a testis-specific gene cluster impairs male fertility in the fall armyworm, Spodoptera frugiperda.

Pest Manag Sci

January 2025

Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China.

Background: The function of some testis-specific genes (TSGs) in model insects have been studied, but their function in non-model insects remains largely unexplored. In the present study, we identified several TSGs in the fall armyworm (FAW), a significant agricultural pest, through comparative transcriptomic analysis. A testis-specific gene cluster (TSGC) comprising multiple functional genes and long non-coding RNAs was found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!