Inadequate sanitation can lead to exposure to fecal contamination through multiple environmental pathways and can result in adverse health outcomes. By understanding the relative importance of multiple exposure pathways, sanitation interventions can be tailored to those pathways with greatest potential public health impact. The SaniPath Exposure Assessment Tool allows users to identify and quantify human exposure to fecal contamination in low-resource urban settings through a systematic yet customizable process. The Tool includes: a project management platform; mobile data collection and a data repository; protocols for primary data collection; and automated exposure assessment analysis. The data collection protocols detail the process of conducting behavioral surveys with households, school children, and community groups to quantify contact with fecal exposure pathways and of collecting and analyzing environmental samples for E. coli as an indicator of fecal contamination. Bayesian analyses are used to estimate the percentage of the population exposed and the mean dose of fecal exposure from microbiological and behavioral data. Fecal exposure from nine pathways (drinking water, bathing water, surface water, ocean water, open drains, floodwater, raw produce, street food, and public or shared toilets) can be compared through a common metric-estimated ingestion of E. coli units (MPN or CFU) per month. The Tool generates data visualizations and recommendations for interventions designed for both scientific and lay audiences. When piloted in Accra, Ghana, the results of the Tool were comparable with that of an in-depth study conducted in the same neighborhoods and highlighted consumption of raw produce as a dominant exposure pathway. The Tool has been deployed in nine cities to date, and the results are being used by local authorities to design and prioritize programming and policy. The SaniPath Tool is a novel approach to support public-health evidence-based decision-making for urban sanitation policies and investments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292388PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234364PLOS

Publication Analysis

Top Keywords

fecal contamination
16
exposure assessment
12
exposure fecal
12
exposure pathways
12
data collection
12
fecal exposure
12
exposure
10
sanipath exposure
8
assessment tool
8
contamination multiple
8

Similar Publications

Heavy metal pollution has complex impacts on terrestrial ecosystems, affecting biodiversity, trophic relationships, species health, and the quality of natural resources. This study aims to validate a non-invasive method for detecting heavy metals (Cd, As, Zn, Cu, Cr) in micromammalian prey, which constitute the primary diet of the common genet (), a mesocarnivore sensitive to habitat degradation. By focusing on prey remains (hair and bones) rather than entire fecal samples, this approach leverages the genet's selective feeding habits to assess the bioaccumulation of contaminants in its preferred prey.

View Article and Find Full Text PDF

Cystic and alveolar echinococcosis are severe zoonotic diseases characterized by long asymptomatic periods lasting months or years. Viable Echinococcus spp. eggs released into the environment through the feces of canids can infect humans through accidental ingestion via hand-to-mouth contact or consumption of contaminated food or water.

View Article and Find Full Text PDF

This study aimed to investigate the dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in water samples obtained during the coronavirus disease 2019 pandemic period, employing cross-assembly phage (crAssphage) as a fecal contamination biomarker and next-generation sequencing protocols to characterize SARS-CoV-2 variants. Raw wastewater and surface water (stream and sea) samples were collected for over a month in Rio de Janeiro, Brazil. Ultracentrifugation and negatively charged membrane filtration were employed for viral concentration of the wastewater and surface water samples, respectively.

View Article and Find Full Text PDF

Coastal waters are the ultimate destination for both point and non-point sources of contamination. The uncontrolled dicharge of fecal waste into the ocean harms natural resources, marine life, and poses health risks to humans. Regular monitoring of coastal water quality and source tracking is important to prevent disease outbreaks.

View Article and Find Full Text PDF

Groundwater is an essential drinking water source for humans. However, improper groundwater management leads to fecal contamination and waterborne diseases caused by viral pathogens. Therefore, this study aimed to investigate norovirus (NoV) contamination by conducting nationwide monitoring over five years (2019-2023).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!