The twist degree of freedom provides a powerful new tool for engineering the electrical and optical properties of van der Waals heterostructures. Here, we show that the twist angle can be used to control the spin-valley properties of transition metal dichalcogenide bilayers by changing the momentum alignment of the valleys in the two layers. Specifically, we observe that the interlayer excitons in twisted WSe_{2}/WSe_{2} bilayers exhibit a high (>60%) degree of circular polarization (DOCP) and long valley lifetimes (>40  ns) at zero electric and magnetic fields. The valley lifetime can be tuned by more than 3 orders of magnitude via electrostatic doping, enabling switching of the DOCP from ∼80% in the n-doped regime to <5% in the p-doped regime. These results open up new avenues for tunable chiral light-matter interactions, enabling novel device schemes that exploit the valley degree of freedom.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.217403DOI Listing

Publication Analysis

Top Keywords

twisted wse_{2}/wse_{2}
8
wse_{2}/wse_{2} bilayers
8
electrically tunable
4
tunable valley
4
valley dynamics
4
dynamics twisted
4
bilayers twist
4
twist degree
4
degree freedom
4
freedom powerful
4

Similar Publications

The emerging moiré superstructure of twisted transition metal dichalcogenides (TMDs) leads to various correlated electronic and optical properties compared to those of twisted bilayer graphene. In such a versatile architecture, phonons can also be renormalized and evolve due to atomic reconstruction, which, in turn, depends on the twist angle. However, observing this reconstruction and its relationship to phonon behavior with conventional, cost-effective imaging methods remains challenging.

View Article and Find Full Text PDF

Pressure-Induced Dynamic Tuning of Interlayer Coupling in Twisted WSe/WSe Homobilayers.

Nano Lett

October 2023

School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.

Moiré superlattices induced by twisted van der Waals (vdW) heterostructures or homostructures have recently gained significant attention due to their potential to generate exotic strong-correlation electronic and phonon phenomena. However, the lack of dynamic tuning for interlayer coupling of moiré superlattices hinders a thorough understanding and development of the moiré correlation state. Here, we present a dynamic tuning method for twisted WSe/WSe homobilayers using a diamond anvil cell (DAC).

View Article and Find Full Text PDF

Interlayer coupling plays a critical role in the electronic band structures and optoelectronic properties of van der Waals (vdW) materials and heterostructures. Here, we utilize optical second-harmonic generation (SHG) measurements to probe the twist-controlled interlayer coupling in artificially stacked WSe/WSe homobilayers and WSe/WS and WSe/MoS heterobilayers with a postannealing procedure. In the large angle twisted WSe/WSe and WSe/WS, the angular dependence of the SHG intensity follows the interference relations up to angles above 10°.

View Article and Find Full Text PDF

Evidence for moiré intralayer excitons in twisted WSe/WSe homobilayer superlattices.

Light Sci Appl

June 2022

School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, China.

Recent advances in twisted van der Waals heterostructure superlattices have emerged as a powerful and attractive platform for exploring novel condensed matter physics due to the interplay between the moiré potential and Coulomb interactions. The moiré superlattices act as a periodic confinement potential in space to capture interlayer excitons (IXs), resulting in moiré exciton arrays, which provide opportunities for quantum emitters and many-body physics. The observation of moiré IXs in twisted transition-metal dichalcogenide (TMD) heterostructures has recently been widely reported.

View Article and Find Full Text PDF

Moiré superlattices in twisted van der Waals materials have recently emerged as a promising platform for engineering electronic and optical properties. A major obstacle to fully understanding these systems and harnessing their potential is the limited ability to correlate direct imaging of the moiré structure with optical and electronic properties. Here we develop a secondary electron microscope technique to directly image stacking domains in fully functional van der Waals heterostructure devices.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!