Distributed quantum information processing is based on the transmission of quantum data over lossy channels between quantum processing nodes. These nodes may be separated by a few microns or on planetary scale distances, but transmission losses due to absorption and/or scattering in the channel are the major source of error for most distributed quantum information tasks. Of course, quantum error correction (QEC) and detection techniques can be used to mitigate such effects, but error detection approaches have severe performance limitations due to the signaling constraints between nodes, and so error correction approaches are preferable-assuming one has sufficient high quality local operations. Typically, performance comparisons between loss-mitigating codes assume one encoded qubit per photon. However, single photons can carry more than one qubit of information and so our focus in this Letter is to explore whether loss-based QEC codes utilizing quantum multiplexed photons are viable and advantageous, especially as photon loss results in more than one qubit of information being lost. We show that quantum multiplexing enables significant resource reduction, in terms of the number of single-photon sources, while at the same time maintaining (or even lowering) the number of 2-qubit gates required. Further, our multiplexing approach requires only conventional optical gates already necessary for the implementation of these codes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.210503DOI Listing

Publication Analysis

Top Keywords

distributed quantum
12
quantum processing
12
quantum
9
resource reduction
8
quantum multiplexed
8
multiplexed photons
8
error correction
8
reduction distributed
4
processing quantum
4
photons distributed
4

Similar Publications

Quantum key distribution (QKD) is critical for future proofed secure communication. Satellites will be necessary to mediate QKD on a global scale. The limitations of the existing quantum memory and repeater technology mean that twin-field QKD (TF-QKD) provides the most feasible near-term solution to perform QKD with an untrusted satellite.

View Article and Find Full Text PDF

Mode-pairing quantum key distribution (MP-QKD) circumvents the need for phase locking through post-selection pairing, still allowing it to surpass the repeaterless rate-transmittance limit. This protocol, therefore, presents a promising approach for practical QKD implementation. Without phase locking and tracking, the performance of the laser, channel, and detector critically affects the determination of the maximum pairing length in pairing strategies.

View Article and Find Full Text PDF

Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination.

Nat Commun

January 2025

State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.

Metal-organic frameworks that feature hybrid fluorescence and phosphorescence offer unique advantages in white-emitting communities based on their multiple emission centers and high exciton utilization. However, it poses a substantial challenge to realize superior white-light emission in single-component metal-organic frameworks without encapsulating varying chromophores or integrating multiple phosphor subunits. Here, we achieve a high-performance white-light emission with photoluminescence quantum yield of 81.

View Article and Find Full Text PDF

Accurate QM/MM Molecular Dynamics for Periodic Systems in GPU4PySCF with Applications to Enzyme Catalysis.

J Chem Theory Comput

January 2025

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

We present an implementation of the quantum mechanics/molecular mechanics (QM/MM) method for periodic systems using GPU accelerated QM methods, a distributed multipole formulation of the electrostatics, and a pseudobond treatment of the QM/MM boundary. We demonstrate that our method has well-controlled errors, stable self-consistent QM convergence, and energy-conserving dynamics. We further describe an application to the catalytic kinetics of chorismate mutase.

View Article and Find Full Text PDF

The temperature dependence of Mössbauer quadrupole splitting values: a quantum chemical analysis.

Chem Commun (Camb)

January 2025

Department of Chemistry, Quantum Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany.

The two key parameters extracted from Mössbauer spectroscopy, isomer shift and quadrupole splitting, have well-known temperature dependencies. While the behavior of the values following a temperature change has long been known, its microscopic origins are less clear. For quantum chemical calculations - formally representing the situation at 0 K - significant discrepancies with the experiment can arise, especially at elevated temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!