Hydrophobic neoantigens are more immunogenic because they are better presented by the major histocompatibility complex and better recognized by T cells. Tumor cells can evade the immune response by expressing checkpoints such as programmed death ligand 1. Checkpoint blockade reactivates immune recognition and can be effective in diseases such as melanoma, which harbors a high tumor mutational burden (TMB). Cancers presenting low or intermediate TMB can also respond to checkpoint blockade, albeit less frequently, suggesting the need for biological markers predicting response. We calculated the hydrophobicity of neopeptides produced by probabilistic in silico simulation of the genomic UV exposure mutational signature. We also computed the hydrophobicity of potential neopeptides and extent of UV exposure based on the UV mutational signature enrichment (UVMSE) score in The Cancer Genome Atlas (TCGA; N = 3543 tumors), and in our cohort of 151 immunotherapy-treated patients. In silico simulation showed that UV exposure significantly increased hydrophobicity of neopeptides, especially over multiple mutagenic cycles. There was also a strong correlation (R  = 0.953) between weighted UVMSE and hydrophobicity of neopeptides in TCGA melanoma patients. Importantly, UVMSE was able to predict better response (P = 0.0026), progression-free survival (P = 0.036), and overall survival (P = 0.052) after immunotherapy in patients with low/intermediate TMB, but not in patients with high TMB. We show that higher UVMSE scores could be a useful predictor of better immunotherapy outcome, especially in patients with low/intermediate TMB, likely due to increased hydrophobicity (and hence immunogenicity) of neopeptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7400787PMC
http://dx.doi.org/10.1002/1878-0261.12748DOI Listing

Publication Analysis

Top Keywords

mutational signature
12
hydrophobicity neopeptides
12
predicting response
8
checkpoint blockade
8
in silico simulation
8
increased hydrophobicity
8
patients low/intermediate
8
low/intermediate tmb
8
tmb
5
hydrophobicity
5

Similar Publications

Homologous recombination is a largely error-free DNA repair mechanism conserved across all domains of life and is essential for the maintenance of genome integrity. Not only are the mutations in homologous recombination repair genes probable cancer drivers, some also cause genetic disorders. In particular, mutations in the Bloom (BLM) helicase cause Bloom Syndrome, a rare autosomal recessive disorder characterized by increased sister chromatid exchanges and predisposition to a variety of cancers.

View Article and Find Full Text PDF

Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.

View Article and Find Full Text PDF

Adaptation to existence outside the womb is a key event in the life of a mammal. The absence of macrophages in rats with a homozygous mutation in the colony-stimulating factor 1 receptor (Csf1r) gene (Csf1rko) severely compromises pre-weaning somatic growth and maturation of organ function. Transfer of wild-type bone marrow cells (BMT) at weaning rescues tissue macrophage populations permitting normal development and long-term survival.

View Article and Find Full Text PDF

Vulvar adenocarcinoma of the intestinal type (VAIt) is a rare subtype of primary vulvar carcinoma, with ∼30 cases documented in the English literature. This study presents 2 new cases of HPV-independent VAIt with lymph node metastasis and discusses their clinical presentation, histopathologic features, and whole exome sequencing (WES) analysis. Both cases exhibited histologic features consistent with VAIt, including tubular, papillary, and mucinous carcinoma components.

View Article and Find Full Text PDF

Unlabelled: Compartmentalization of the nucleus into heterochromatin and euchromatin is highly conserved across eukaryotes. Constitutive heterochromatin (C-Het) constitutes a liquid-like condensate that packages the repetitive regions of the genome through the enrichment of histone modification H3K9me3 and recruitment of its cognate reader protein Heterochromatin Protein-1 (HP1a). The ability for well-ordered nucleosome arrays and HP1a to independently form biomolecular condensates suggests that the emergent material properties of C-Het compartments may contribute to its functions such as force-buffering, dosage-dependent gene silencing, and selective permeability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!