To investigate soil fertility status and characteristics of typical tea plantations, we selec-ted 372 typical tea plantations of 21 areas across Jiangxi Province and analyzed the soil nutrient, spatial data, and their correlations with topography, soil type, elevation and plantation age. The results showed that soil pH, organic matter, alkaline nitrogen, available phosphorus, available potassium, total nitrogen, total phosphorus and total potassium of tea plantation in Jiangxi reached 53.9%, 60.1%, 56.1%, 22.9%, 38.5%, 43.7%, 11.1% and 95.5% of indices of high fertility, high efficiency and high yield tea plantation, respectively, with the available phosphorus showing a strong variation. Soil available copper, zinc, iron, manganese and boron reached 76.3%, 74.2%, 96.8%, 73.1% and 0.0% of the first-class standards for soil trace elements, respectively. Tea plantations with highest soil fertility located in central Jiangxi, followed by northeastern and northwestern Jiangxi, and lowest in southern Jiangxi. Soil pH was significantly positively correlated with organic matter, alkaline nitrogen, available phosphorus, available potassium, total nitrogen and total phosphorus but not for total potassium. For different topography, soil fertility was highest in the flat land, followed by the high mountains, and lowest in the mountains and hills. Across different soil types, soil fertility was higher in paddy soil, sandy soil and mountain yellow brown soil, followed by yellow soil, red-yellow soil and purple soil, and lowest in red soil. Soil pH, organic matter and total potassium increased while available phosphorus decreased with altitude. The organic matter, alkaline nitrogen, available phosphorus, total nitrogen and total phosphorus increased, but soil pH decreased with time. In summary, soil fertility of tea plantations in Jiangxi Province was generally good, with high organic matter, total potassium, available copper, zinc, iron and manganese. However, soil was acidic, available phosphorus and total phosphorus content was low, available boron was seriously limited. We suggest increase soil pH and potassium supply in central Jiangxi, increase potassium and nitrogen fertilizer supply in northeastern Jiangxi, increase organic matter and phosphorus fertilizer supply in northwestern Jiangxi, and increase nitrogen, phosphorus and potassium supply combined with organic fertilizers in southern Jiangxi. High mountain tea plantations should enhance available phosphorus and potassium supply. Mountain tea plantations should enhance nitrogen and phosphate supply. Tea plantations with red and yellow soil should increase pH and total potassium supply. Tea plantations with red soil should apply nitrogen, phosphorus and potassium fertilizers combined with organic fertilizers. Tea plantations with yellow soil and mountain yellow brown soil required additional phosphorus supply, and tea plantations with purple soil should increase soil organic matter supply. Tea plantations need to increase dolomite powder, physiological alkaline fertilizers and organic fertilizers to prevent soil acidification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202004.022 | DOI Listing |
Sci Rep
January 2025
Department of Plant, Food, and Environmental Sciences, Dalhousie University, Truro, B2N 5E3, Nova Scotia, Canada.
Tea plantations commonly receive substantial quantities of nitrogen (N) fertilizer, with potential for considerable N loss to occur. This study assessed N retention in acidic tea plantation soil and examined how different biochar application rates and fertilizer combinations affect N dynamics, highlighting the importance of innovative technologies to monitor and enhance N supply management. This research adopted a modified 2-week aerobic incubation and ion-exchange membrane (IEM) techniques to evaluate the soil N supply in tea plantations following early-summer top-dressing as influenced by various biochar rates and fertilizer combinations.
View Article and Find Full Text PDFMetabolites
January 2025
Department of Life Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
Background/objectives: Dartmoor Estate Tea plantation in Devon, UK, is renowned for its unique microclimate and varied soil conditions, which contribute to the distinctive flavours and chemical profiles of tea. The chemical diversity of fresh leaf samples from various garden locations was explored within the plantation.
Methods: Fresh leaf, which differed by location, cultivar, time of day, and variety, was analysed using Flow Infusion Electrospray Ionisation Mass Spectrometry (FIE-MS).
Front Plant Sci
January 2025
Institute of Plant Protection, Hainan Academy of Agricultural Sciences, Haikou, China.
The tea mosquito bug, Waterhouse (Hemiptera: Miridae), is a devastating piercing-sucking pest in tropical tea plantations. The Hainan Dayezhong (HNDYZ) is a large-leaf tea cultivar widely cultivated around the Hainan tea region in South China. However, information regarding the feeding damage of on the HNDYZ tea plant remains scarce.
View Article and Find Full Text PDFHortic Res
January 2025
College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
The circadian clock mediates metabolic functions of plants and rhythmically shapes structure and function of microbial communities in the rhizosphere. However, it is unclear how the circadian rhythm of plant hosts regulates changes in rhizosphere bacterial and fungal communities and nutrient cycles. In the present study, we measured diel changes in the rhizosphere of bacterial and fungal communities, and in nitrogen (N) and phosphorus (P) cycling in 20-year-old tea plantations.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Department of Science of Physics, Chemistry and Engineering of Faculty of Science and Technology and Institute of Agricultural and Environmental Research and Technology (IITAA), University of Azores, 9500-321 Ponta Delgada, Portugal.
tea has received considerable attention due to its beneficial effects on health, particularly due to its antioxidant properties that are affected by several factors, which have a high influence on the final quality of black tea. The objective of this study was to investigate the biological properties of Azorean black tea from five different zones of tea plantation in order to select specific areas to cultivate tea rich in targeted compounds beneficial to human health. The free radical scavenging activity (FRSA), ferric reducing antioxidant power (FRAP), ferrous ion chelating (FIC) activities, total phenolic content (TPC), total flavonoid content (TFC), and tannins were determined by colorimetric methods, and catechin and theaflavin contents were analyzed by high-pressure liquid chromatography.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!