With unique valley-dependent optical and optoelectronic properties, 2D transition metal dichalcogenides (2D TMDCs) are promising materials for valleytronics. Second-harmonic generation (SHG) in 2D TMDCs monolayers has shown valley-dependent optical selection rules. However, SHG in monolayer TMDCs is generally weak; it is important to obtain materials with both strong SHG signals and a large degree of polarization. In the work, a variety of inversion-symmetry-breaking (3R-like phase) TMDCs (WSe , WS , MoS ) atomic layers, spiral structures, and heterostructures are prepared, and their SHG polarization is studied. Through circular-polarization-resolved SHG experiments, it is demonstrated that the SHG intensity is enhanced in thicker samples by breaking inversion symmetry while maintaining the degree of polarization close to unity at room temperature. By studying TMDCs with different twist angles and the spiral structures, it is found that there is no significant effect of multilayer interlayer interaction on valley-dependent SHG. The realization of strong SHG with high degree of polarization may pave the way toward a new platform for nonlinear optical valleytronics devices based on 2D semiconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.201908061DOI Listing

Publication Analysis

Top Keywords

degree polarization
12
second-harmonic generation
8
room temperature
8
valley-dependent optical
8
shg
8
strong shg
8
spiral structures
8
tmdcs
5
near-unity polarization
4
valley-dependent
4

Similar Publications

Low-dose radiation ameliorates PM2.5-induced lung injury through non-canonical TLR1/TLR2-like receptor pathways modulated by Akkermansia muciniphila.

Ecotoxicol Environ Saf

January 2025

NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin 130021, PR China. Electronic address:

Exposure of PM2.5 can cause different degrees of lung injury, which is referred with inflammatory response. Some evidences showed that low-dose radiation (LDR) induces hormesis in immune, however, it is unknown if LDR ameliorates the PM2.

View Article and Find Full Text PDF

How does dopamine convert into norepinephrine? Insights on the key step of the reaction.

J Mol Model

January 2025

Laboratorio de Química Teórica Computacional (QTC), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, 7820436, Santiago de Chile, Chile.

Context: Dopamine -monooxygenase (D M) is an essential enzyme in the organism that regioselectively converts dopamine into R-norepinephrine, the key step of the reaction, studied in this paper, is a hydrogen atom transfer (HAT) from dopamine to a superoxo complex on D M, forming a hydroperoxo intermediate and dopamine radical. It was found that the formation of a hydrogen bond between dopamine and the D M catalyst strengthens the substrate-enzyme interaction and facilitates the HAT which takes place selectively to give the desired enantiomeric form of the product. Six reactions leading to the hydroperoxo intermediate were analyzed in detail using theoretical and computational tools in order to identify the most probable reaction mechanism.

View Article and Find Full Text PDF

Stacking-Engineered Ferroelectricity and Multiferroic Order in van der Waals Magnets.

Phys Rev Lett

December 2024

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling.

View Article and Find Full Text PDF

Intelligent reflecting surfaces (IRS) are valuable tools for enhancing the intelligence of the propagation environment. They have the ability to direct EM Waves to a specific user through beamforming. A significant number of passive elements are integrated into metasurfaces, allowing for their incorporation onto various surfaces such as walls and buildings.

View Article and Find Full Text PDF

This study proposes a spin-valley electron beam splitter based on the inner-edge states in a topological-insulator junction, which can allocate different ratios of spin-valley current outputs. Since the inner-edge states are associated with the "nearest path selection" mechanism, this device is referred to as the interface-modulating spin-valley electron beam splitter. Additionally, two perfect spin-valley filters in similar topological-insulator junctions are established in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!