Male infertility is an increasing health problem, and oxidative/nitrosative stress plays an important role in the etiology of this condition. Nitrosative stress due to excessive levels of reactive nitrogen species (RNS) is associated with impaired male fertility. Flow cytometry may be a useful tool for semen evaluation, but the availability of multiparameter assays for analysis of sperm quality is limited. The present study standardized a multiparameter flow cytometry analysis for nitrosative stress status in human spermatozoa in a single assay. A suitable multicolor fluorochrome panel was designed and consisted of fluorescein-boronate to detect peroxynitrite, a highly RNS, propidium iodide to analyze viability, tetramethylrhodamine methyl ester perchlorate to detect mitochondrial membrane potential (MMP) and monobromobimane to analyze thiol oxidation. Proper positive and negative controls for each fluorochrome were used to establish the technique, and sperm cells of different qualities and spermatozoa subjected to cryopreservation were analyzed. The results showed that the controls clearly discriminated between the high and low fluorescence intensities for each fluorochrome. The analysis of sperm cells of different quality demonstrated that the assay properly detected differences in all parameters analyzed according to sperm quality. The results may be reported as the mean fluorescence intensity of each fluorochrome and the percentage of cells exhibiting different characteristics. In conclusion, a protocol was standardized to analyze nitrosative stress status, including peroxynitrite production, viability, MMP, and thiol oxidation, in a single analysis using flow cytometry. This protocol may be applied to research approaches and clinical andrology to improve the evaluation of sperm quality and provide a promising tool to increase the use of clinical flow cytometry. © 2020 International Society for Advancement of Cytometry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.24170DOI Listing

Publication Analysis

Top Keywords

flow cytometry
20
nitrosative stress
16
stress status
12
sperm quality
12
multiparameter flow
8
analysis nitrosative
8
status human
8
human spermatozoa
8
analysis sperm
8
thiol oxidation
8

Similar Publications

High expression of ARPC1B promotes the proliferation and Apoptosis of clear cell renal cell carcinoma cells, leading to a poor prognosis.

Mol Cell Probes

January 2025

Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China. Electronic address:

Background: ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients.

View Article and Find Full Text PDF

Background: Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets.

Results: Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers.

View Article and Find Full Text PDF

Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.

View Article and Find Full Text PDF

UGP2, a novel target gene of TP53, inhibits endothelial cells apoptosis and atherosclerosis.

Life Sci

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:

The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!