Male infertility is an increasing health problem, and oxidative/nitrosative stress plays an important role in the etiology of this condition. Nitrosative stress due to excessive levels of reactive nitrogen species (RNS) is associated with impaired male fertility. Flow cytometry may be a useful tool for semen evaluation, but the availability of multiparameter assays for analysis of sperm quality is limited. The present study standardized a multiparameter flow cytometry analysis for nitrosative stress status in human spermatozoa in a single assay. A suitable multicolor fluorochrome panel was designed and consisted of fluorescein-boronate to detect peroxynitrite, a highly RNS, propidium iodide to analyze viability, tetramethylrhodamine methyl ester perchlorate to detect mitochondrial membrane potential (MMP) and monobromobimane to analyze thiol oxidation. Proper positive and negative controls for each fluorochrome were used to establish the technique, and sperm cells of different qualities and spermatozoa subjected to cryopreservation were analyzed. The results showed that the controls clearly discriminated between the high and low fluorescence intensities for each fluorochrome. The analysis of sperm cells of different quality demonstrated that the assay properly detected differences in all parameters analyzed according to sperm quality. The results may be reported as the mean fluorescence intensity of each fluorochrome and the percentage of cells exhibiting different characteristics. In conclusion, a protocol was standardized to analyze nitrosative stress status, including peroxynitrite production, viability, MMP, and thiol oxidation, in a single analysis using flow cytometry. This protocol may be applied to research approaches and clinical andrology to improve the evaluation of sperm quality and provide a promising tool to increase the use of clinical flow cytometry. © 2020 International Society for Advancement of Cytometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.24170 | DOI Listing |
Mol Cell Probes
January 2025
Department of Urology Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Microbiome Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450003, China. Electronic address:
Background: ARPC1B has been identified as a key regulator of malignant biological behavior in various tumors. However, its specific role in clear cell renal cell carcinoma (ccRCC) remains poorly understood. This study aims to evaluate the influence of ARPC1B on the prognosis and disease progression in ccRCC patients.
View Article and Find Full Text PDFGenomics
January 2025
Anhui University of Science and Technology, Huainan 232000, China. Electronic address:
Background: Systemic Lupus Erythematosus (SLE) is a typical autoimmune disease characterized by a complex pathogenesis and a strong genetic predisposition. The study of inflammatory response in SLE monocytes is not very clear, and exploring the inflammatory factors of monocytes is beneficial to discover new diagnostic targets.
Results: Using scRNA-seq technology, we obtained the quantitative changes in circulating immune cells and various cellular immune metabolic profiles between SLE patients and healthy volunteers.
J Hepatol
January 2025
Department of Biomedicine, University of Basel, Switzerland; University Centre for Gastrointestinal and Liver Disease Basel, Switzerland. Electronic address:
Background & Aims: Infectious complications determine the prognosis of cirrhosis patients. Their infection susceptibility relates to the development of immuneparesis, a complex interplay of different immunosuppressive cells and soluble factors. Mechanisms underlying the dynamics of immuneparesis of innate immunity remain inconclusive.
View Article and Find Full Text PDFLife Sci
January 2025
Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. Electronic address:
The dysfunction of the endothelial lining in lesion-prone areas of the arterial vasculature significantly contributes to the pathobiology of atherosclerotic cardiovascular disease. Recent studies suggested that UDP-glucose pyrophosphorylase 2 (UGP2) plays a role in cell proliferation and survival. This study investigates the anti-apoptotic and anti-atherogenic effects of UGP2 both in vitro and in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!