Surface expression of human leukocyte antigen (HLA)-class I molecules is critical for modulating T/natural killer lymphocytes' effector functions. Among HLA molecules, HLA-C, the most recently evolved form of class I antigens, is subjected to both transcriptional and multiple post-transcriptional regulation mechanisms affecting its cell surface expression. Among the latter a region placed in the 3' untranslated region of HLA-C transcript contains the single nucleotide polymorphism (SNP) rs67384697 "G-ins/del" that has been found to be strictly associated with surface levels of HLA-C allomorphs because of the effect on the binding site of a microRNA (Hsa-miR-148a). Higher expression of HLA-C has been proved to influence HIV-1 infection via a better control of viremia and a slower disease progression. More importantly, the analysis of SNP rs67384697 "G-ins/del" combined with the evaluation of the HLA-Bw4/-Bw6 C1/C2 supratype, as well as the killer immunoglobulin-like receptor genetic asset, has proved to be pivotal in defining the status of Elite Controllers in the Caucasian population. Here we describe a new reliable and fast method of allele-specific real-time PCR to monitor the integrity/disruption of the binding site of the microRNA Hsa-miR-148a in a high-throughput format that can be easily applied to studies involving large cohorts of individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tan.13971DOI Listing

Publication Analysis

Top Keywords

snp rs67384697
12
binding site
12
allele-specific real-time
8
real-time pcr
8
surface expression
8
rs67384697 "g-ins/del"
8
site microrna
8
microrna hsa-mir-148a
8
fast reliable
4
reliable method
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!