Background: Flotation is a process to reduce the must turbidity after grape pressing. The use of fining agents to reduce the polyphenol content is essential for white wine, but their impact on volatile compounds must be considered. Malvasia del Lazio juice (Vitis vinifera L.) was treated before flotation with animal gelatin (GEL), legume protein plus chitin (LEGCHIT), and legume protein plus yeast extract (LEGYEAST). The clarification efficiency, total polyphenols, and total proteins were determined in the grape must before and after flotation, as well as the volatile composition and sensory characteristics of the resulting wines.
Results: The LEGCHIT trial was the most efficient, it being the fastest and achieving the lowest turbidity values. The GEL trial was the slowest, showing grape must turbidity values similar to LEGYEAST but also the highest total protein content. The vegetal protein treatments caused a decrease in the concentration of volatile organic compounds (VOCs) with respect to gelatin, which resulted in a reduction of aroma intensity, particularly for fruity and floral notes, but also for green notes. Furthermore, LEGCHIT wines were appreciated by panelists for their greater body and reduced astringency perception.
Conclusion: The use of legume protein combined with chitin as a fining agent for flotation is advantageous in terms of clarification efficiency for grape must. Furthermore, the wines obtained showed high perceived global quality, even though a higher loss (38% and 27% respectively for LEGYEAST and LEGCHIT) of VOCs occurred when compared with gelatin. © 2020 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jsfa.10577 | DOI Listing |
J Agric Food Chem
January 2025
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China.
Legumes are well-known for symbiotic nitrogen fixation, whereas associative nitrogen fixation for nonlegume plants needs more attention. Most associative nitrogen-fixing bacteria are applied in their original plant species and need further study for broad adaptation. Additionally, if isolated nitrogen-fixing bacteria could function under fertilizer conditions, it is often ignored.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Translational Immunology, University Medical Center Utrecht, KC 02.085.2, P.O. Box 85090, 3508 AB, Utrecht, The Netherlands.
The proximity extension assay (PEA) enables large-scale proteomic investigations across numerous proteins and samples. However, discrepancies between measurements, known as batch-effects, potentially skew downstream statistical analyses and increase the risks of false discoveries. While implementing bridging controls (BCs) on each plate has been proposed to mitigate these effects, a clear method for utilizing this strategy remains elusive.
View Article and Find Full Text PDFAllergol Immunopathol (Madr)
January 2025
Department of Research and Development, Inmunotek SL, Alcalá de Henares, Madrid, Spain.
Background: Anaphylaxis is a severe allergic reaction with increasing incidence in Europe. It is often caused by food, insect venom, and drugs. White, red, and green beans () are legumes of the family consumed worldwide.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.
View Article and Find Full Text PDFBMC Genomics
January 2025
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.
Background: Additional to total protein content, the amino acid (AA) profile is important to the nutritional value of soybean seed. The AA profile in soybean seed is a complex quantitative trait controlled by multiple interconnected genes and pathways controlling the accumulation of each AA. With a total of 621 soybean germplasm, we used three genome-wide association study (GWAS)-based approaches to investigate the genomic regions controlling the AA content and profile in soybean.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!