An alternative strategy for the synthesis of terpyridine based switchable molecular tweezers has been developed to incorporate anisotropic Mn(iii)-salphen complexes. The free ligand was synthesized using a building block strategy based on Sonogashira coupling reactions and was then selectively metalated with manganese in a last step. The conformation of the tweezers was switched from an open 'W' shaped form to a closed 'U' form by Zn(ii) coordination to the terpyridine unit bringing the two Mn-salphen moieties in close spatial proximity as confirmed by X-ray crystallography. An alternate switching mechanism was observed by the intercalation of a bridging cyanide ligand between the two Mn-salphen moieties that resulted in the closing of the tweezers. These dual stimuli are attractive for achieving multiple controls of the mechanical motion of the tweezers. A crystallographic structure of unexpected partially oxidized closed tweezers was also obtained. One of the two Mn-salphen moieties underwent a ligand-centered oxidation of an imino to an amido group allowing an intramolecular Mn-Oamide-Mn linkage. The magnetic properties of the manganese(iii) dimers were investigated to evaluate the magnetic exchange interaction and analyze the single molecule magnet behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt01465fDOI Listing

Publication Analysis

Top Keywords

mn-salphen moieties
12
switchable molecular
8
molecular tweezers
8
tweezers
6
dual switchable
4
tweezers incorporating
4
incorporating anisotropic
4
mn-salphen
4
anisotropic mn-salphen
4
mn-salphen complexes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!