Background: The aim of this study was to determine whether progesterone could inhibit the growth of lung adenocarcinoma cells via membrane progesterone receptor alpha (mPRα) and elucidate its potential mechanism. The relationship between mPRα expression and the survival prognosis of lung adenocarcinoma patients was studied.

Methods: A mPRα knockdown lung adenocarcinoma cell line was constructed and treated with P4 and Org (a derivative of P4 and specific agonist of mPRα). Cell proliferation was assessed using CCK-8 and plate colony formation assays. Protein expression was detected by western blotting. A nude mouse model of lung adenocarcinoma was established to assess the antitumor effect of P4/Org in vivo.

Results: We initially determined that mPRα could promote the development of lung adenocarcinoma through the following lines of evidence. High expression of mPRα both at the mRNA and protein level was significantly associated with the poor prognosis of lung adenocarcinoma patients. The downregulation of mPRα inhibited the proliferation of lung adenocarcinoma cells. We further showed that mPRα mediates the ability of P4 to inhibit the growth of lung adenocarcinoma cells through the following lines of evidence: P4/Org inhibited the proliferation of lung adenocarcinoma cells; mPRα mediated the ability of P4/Org to inhibit lung adenocarcinoma cell proliferation; mPRα mediated the ability of P4/Org to inhibit the PKA (cAMP-dependent protein kinase)/CREB (cAMP responsive element binding protein) and PKA/β-catenin signaling pathways; and P4/Org inhibited the growth of a lung adenocarcinoma tumor model in vivo.

Conclusions: In summary, the results of our study show that progesterone can inhibit lung adenocarcinoma cell growth via mPRα.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396388PMC
http://dx.doi.org/10.1111/1759-7714.13528DOI Listing

Publication Analysis

Top Keywords

lung adenocarcinoma
52
adenocarcinoma cell
16
adenocarcinoma cells
16
lung
13
adenocarcinoma
13
growth lung
12
mprα
11
cell growth
8
membrane progesterone
8
progesterone receptor
8

Similar Publications

Pancreatic ductal adenocarcinoma (PDAC) is characterized by its aggressive nature and dismal prognosis, largely attributed to its unique tumor microenvironment. However, the molecular mechanisms by which tumor-associated macrophages (TAMs) promote PDAC progression, particularly the role of β-catenin signaling in regulating TAM phenotype and function, remain incompletely understood. Initially, we performed comprehensive analyses of RNA-seq and single-cell RNA-seq (scRNA-seq) datasets to investigate OSM and LOXL2 expression patterns in PDAC.

View Article and Find Full Text PDF

Chest x-ray (CXR) is widely used for lung cancer screening in Japan. We evaluated the sensitivity and specificity of CXR in detecting early lung cancer and its histological types. We cross-referenced lung cancer municipality screening data with the regional cancer registry database.

View Article and Find Full Text PDF

Patient-derived tumor organoids (PDTOs) models have been widely used to investigate the response of primary cancer tissues to anti-cancer agents. Nonetheless, only few case study tried to establish PDTOs and test treatment response based on bone metastasis (BoM) tissues. Fresh BoM tissues were obtained from lung cancer (LC) patients who underwent spinal metastatic tumor surgery for PDTOs culture.

View Article and Find Full Text PDF

Distinguishing between primary adenocarcinoma (AC) and squamous cell carcinoma (SCC) within non-small cell lung cancer (NSCLC) tumours holds significant management implications. We assessed the performance of radiomics-based models in distinguishing primary there is from SCC presenting as lung nodules on Computed Tomography (CT) scans. We studied individuals with histopathologically proven adenocarcinoma or SCC type NSCLC tumours, detected as lung nodules on Chest CT.

View Article and Find Full Text PDF

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!