Purpose Of Review: Type 2 diabetes mellitus (T2DM) is associated with an increased fracture risk. Weight loss in T2DM management may result in lowering of bone mass. In this systematic literature review, we aimed to investigate how exercise affects bone health in people with T2DM. Furthermore, we examined the types of exercise with the potential to prevent and treat bone fragility in people with T2DM.

Recent Findings: Exercise differs in type, mechanical load, and intensity, as does the osteogenic response to exercise. Aerobic exercise improves metabolic health in people with T2DM. However, the weight-bearing component of exercise is essential to bone health. Weight loss interventions in T2DM induce a loss of bone mass that may be attenuated if accompanied by resistance or weight-bearing exercise. Combination of weight-bearing aerobic and resistance exercise seems to be preventive against excessive bone loss in people with T2DM. However, evidence is sparse and clinical trials investigating the effects of exercise on bone health in people with T2DM are warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11914-020-00597-0DOI Listing

Publication Analysis

Top Keywords

bone health
16
people t2dm
16
exercise bone
12
health people
12
exercise
9
bone
8
type diabetes
8
weight loss
8
bone mass
8
t2dm
7

Similar Publications

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Purpose: Congenital pseudarthrosis of the tibia (CPT) is a rare condition typically manifesting within the first decade of life. The primary objectives of surgical intervention for CPT include achieving long-term bony union of the tibia, preventing or minimizing limb length discrepancies (LLD), avoiding mechanical axis deviations of the tibia and adjacent joints, and preventing refracture. This study aims to conduct a systematic review of current treatment methods for CPT to determine the most effective non-surgical and surgical management strategies for pediatric patients with this condition.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Background: Older adults and Hispanic individuals are increasingly turning to social media platforms to access health-related information. The purpose of this project was to evaluate a social media campaign to disseminate information from decision aids (DAs) on hip and knee osteoarthritis to Spanish-speaking adults.

Methods: A social media marketing team helped create an 8-mo campaign posted across 3 social media platforms to promote visits to a Web site offering free multilingual DAs for treatment of hip or knee osteoarthritis.

View Article and Find Full Text PDF

Musculoskeletal model predicted paraspinal loading may quick estimate the effect of exercise on spine BMD.

Front Bioeng Biotechnol

December 2024

Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.

Purpose: Spine is the most commonly found fracture site due to osteoporosis. Combined exercise including high-impact and resistance exercise shows the potential to improve bone mineral density (BMD) in the spine. However, the mechanical loading introduced by exercise, which is the mechanism of BMD changes, has not been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!