The classical surgical anatomy of the female pelvis is limited by its gynecological oncological focus on the parametrium and burdened by its modeling based on personal techniques of different surgeons. However, surgical treatment of pelvic diseases, spreading beyond the anatomical area of origin, requires extra-regional procedures and a thorough pelvic anatomical knowledge. This study evaluated the feasibility of a comprehensive and simplified model of pelvic retroperitoneal compartmentalization, based on anatomical rather than surgical anatomical structures. Such a model aims at providing an easier, holistic approach useful for clinical, surgical and educational purposes. Six fresh-frozen female pelves were macroscopically and systematically dissected. Three superficial structures, i.e., the obliterated umbilical artery, the ureter and the sacrouterine ligament, were identified as the landmarks of 3 deeper fascial-ligamentous structures, i.e., the umbilicovesical fascia, the urogenital-hypogastric fascia and the sacropubic ligament. The retroperitoneal areolar tissue was then gently teased away, exposing the compartments delimited by these deep fascial structures. Four compartments were identified as a result of the intrapelvic development of the umbilicovesical fascia along the obliterated umbilical artery, the urogenital-hypogastric fascia along the mesoureter and the sacropubic ligaments. The retroperitoneal compartments were named: parietal, laterally to the umbilicovesical fascia; vascular, between the two fasciae; neural, medially to the urogenital-hypogastric fascia and visceral between the sacropubic ligaments. The study provides the scientific rational for a model of pelvic retroperitoneal anatomy based on identifiable anatomical structures and suitable for surgical planning and training.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806572 | PMC |
http://dx.doi.org/10.1007/s12565-020-00553-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!