Background: Esophageal squamous cell carcinoma (ESCC) is an important cause of cancer-related death worldwide. CD36, a long-chain fatty acid (FA) receptor, can initiate metastasis in human oral squamous cell carcinoma (SCC), and its expression is associated with poor prognosis in several cancers. The clinical significance of CD36 expression and its function in ESCC remain unknown.

Methods: We examined the clinical significance of CD36 expression in 160 ESCC samples using immunohistochemical staining. Functional analysis was performed to determine the association between CD36 and ESCC characteristics (proliferative ability, invasive ability, and energy source dependency).

Results: Thirty (18.8%) ESCC cases showed high CD36 expression, indicating a significant association with progression. CD36 suppression inhibited proliferation and invasiveness in ESCC cells. ESCC cells with CD36 suppression used specific essential amino acids (EAAs) as energy sources. Cell viability depended on FAs under CD36 expression. The viability of ESCC cells with CD36 suppression depended on EAAs but not FAs.

Conclusions: CD36 may be a good biomarker and therapeutic target in ESCC. Our data provide new insights into the basic mechanism of CD36-dependent energy utilization for ESCC survival. CD36 might be a key regulator of the dependency of FAs as energy source in ESCC cells.

Download full-text PDF

Source
http://dx.doi.org/10.1245/s10434-020-08711-3DOI Listing

Publication Analysis

Top Keywords

cd36 expression
20
escc cells
16
cd36
12
energy source
12
squamous cell
12
cell carcinoma
12
cd36 suppression
12
escc
11
expression associated
8
esophageal squamous
8

Similar Publications

Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.

View Article and Find Full Text PDF

Our study examined the relationships and interactions among 30 genes related to the NOD-like receptor protein 3 (NLRP3) inflammasome. We identified 368 interconnections between these 30 genes, with NLRP3 participating in 38 interactions. The potential roles of these genes in atherosclerosis were evaluated based on protein-protein interaction networks and coexpression analysis.

View Article and Find Full Text PDF

LIX1L aggravates MASH-HCC progression by reprogramming of hepatic metabolism and microenvironment via CD36.

Pharmacol Res

December 2024

State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Limb expression 1-like protein (LIX1L) is an essential player in liver disorders, but its function in metabolic dysfunction-associated steatohepatitis (MASH) and associated hepatocellular carcinoma (HCC) progression remains obscure. Here, we identify LIX1L as a key integrative regulator linking lipid metabolism and inflammation, adipose tissue and hepatic microenvironment, which promotes MASH progression. LIX1L significantly upregulates in MASH patients, mouse models, and palmitic acid-stimulated hepatocytes.

View Article and Find Full Text PDF

DHA Improves neurodevelopmental abnormalities in offspring of gestational diabetes mellitus patients via the PPAR-γ/FATP4 pathway.

Biochem Pharmacol

December 2024

Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China; National Clinical Research Center for Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. Electronic address:

Offspring of women with gestational diabetes mellitus (GDM) face an increased risk of long-term neurodevelopmental abnormalities. This study explores the altered expression of key placental fatty acid transport proteins-FATP2, FATP4, FATP6, FABP4, and FAT/CD36-in GDM patients, and the potential of docosahexaenoic acid (DHA) to mitigate neurodevelopmental risks in offspring by enhancing their expression through activation of peroxisome proliferator-activated receptor γ (PPAR-γ). Our findings demonstrate that placental FATP4 expression is reduced in GDM patients.

View Article and Find Full Text PDF

Regulation of PPARγ in the development of early sheep embryos in vitro.

Theriogenology

December 2024

College of Animal Science and Technology, Shihezi University, Shihezi, 832003, China. Electronic address:

Lipid metabolism plays an important role in the regulation of early embryonic development in mammals. However, the effect of lipid metabolism mediated by peroxisome proliferator-activated receptor γ (PPARγ) on the early embryonic development of sheep remains unclear. In this study, rosiglitazone (RSG), a PPARγ activator, was added to the in vitro embryo culture (IVC) medium to regulate the continuous expression of PPARγ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!