Droplet-based microfluidics enables compartmentalization and controlled manipulation of small volumes. Open microfluidics provides increased accessibility, adaptability, and ease of manufacturing compared to closed microfluidic platforms. Here, we begin to build a toolbox for the emerging field of open channel droplet-based microfluidics, combining the ease of use associated with open microfluidic platforms with the benefits of compartmentalization afforded by droplet-based microfluidics. We develop fundamental microfluidic features to control droplets flowing in an immiscible carrier fluid within open microfluidic systems. Our systems use capillary flow to move droplets and carrier fluid through open channels and are easily fabricated through 3D printing, micromilling, or injection molding; further, droplet generation can be accomplished by simply pipetting an aqueous droplet into an empty open channel. We demonstrate on-chip incubation of multiple droplets within an open channel and subsequent transport (using an immiscible carrier phase) for downstream experimentation. We also present a method for tunable droplet splitting in open channels driven by capillary flow. Additional future applications of our toolbox for droplet manipulation in open channels include cell culture and analysis, on-chip microscale reactions, and reagent delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289158 | PMC |
http://dx.doi.org/10.1039/c9ay00758j | DOI Listing |
Sci Rep
December 2024
Department of Chemistry, University of Washington, Box 351700, Seattle, Washington, 98195, USA.
Trigger valves are fundamental features in capillary-driven microfluidic systems that stop fluid at an abrupt geometric expansion and release fluid when there is flow in an orthogonal channel connected to the valve. The concept was originally demonstrated in closed-channel capillary circuits. We show here that trigger valves can be successfully implemented in open channels.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
Digital PCR (dPCR) has transformed nucleic acid diagnostics by enabling the absolute quantification of rare mutations and target sequences. However, traditional dPCR detection methods, such as those involving flow cytometry and fluorescence imaging, may face challenges due to high costs, complexity, limited accuracy, and slow processing speeds. In this study, SAM-dPCR is introduced, a training-free open-source bioanalysis paradigm that offers swift and precise absolute quantification of biological samples.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Prosthodontics, Dental and Craniofacial Bioengineering and Applied Biomaterials, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece. Electronic address:
Introduction: Α customized organ-on-a-chip microfluidic device was developed for dynamic culture of oral mucosa equivalents (Oral_mucosa_chip-OMC).
Materials And Methods: Additive Manufacturing (AM) was performed via stereolithography (SLA) printing. The dimensional accuracy was evaluated via microfocus computed tomography (mCT), the surface characteristics via scanning electron microscopy (SEM), while the mechanical properties via nanoindentation and compression tests.
ACS Pharmacol Transl Sci
December 2024
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China.
Tumor organoids are biological models for studying precision medicine. Microfluidic technology offers significant benefits for high throughput drug screening using tumor organoids. However, the range of concentrations achievable with traditional linear gradient generators in microfluidics is restricted, generating logarithmic drug concentration gradients by adjusting the channel ratio in the chip is confined to single-drug dilution chips, significantly restricting the application of microfluidics in drug screening.
View Article and Find Full Text PDFIEEE Open J Eng Med Biol
October 2024
MEMS, Microfluidics and Nanoelectronics (MMNE) LabBirla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus Hyderabad 500078 India.
This study introduced a proof-of-concept prototype for isothermal recombinase polymerase amplification (RPA) with miniaturized photometric detection, enabling rapid P. aeruginosa detection. The researchers conducted the amplification process within a microchamber with a diameter of 10 mm, utilizing a standalone Thermostat driven thermal management setup.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!