Geochemical evidence for a widespread mantle re-enrichment 3.2 billion years ago: implications for global-scale plate tectonics.

Sci Rep

Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.

Published: June 2020

Progressive mantle melting during the Earth's earliest evolution led to the formation of a depleted mantle and a continental crust enriched in highly incompatible elements. Re-enrichment of Earth's mantle can occur when continental crustal materials begin to founder into the mantle by either subduction or, to a lesser degree, by delamination processes, profoundly affecting the mantle's trace element and volatile compositions. Deciphering when mantle re-enrichment/refertilization became a global-scale process would reveal the onset of efficient mass transfer of crust to the mantle and potentially when plate tectonic processes became operative on a global-scale. Here we document the onset of mantle re-enrichment/refertilization by comparing the abundances of petrogenetically significant isotopic values and key ratios of highly incompatible elements compared to lithophile elements in Archean to Early-Proterozoic mantle-derived melts (i.e., basalts and komatiites). Basalts and komatiites both record a rapid-change in mantle chemistry around 3.2 billion years ago (Ga) signifying a fundamental change in Earth geodynamics. This rapid-change is recorded in Nd isotopes and in key trace element ratios that reflect a fundamental shift in the balance between fluid-mobile and incompatible elements (i.e., Ba/La, Ba/Nb, U/Nb, Pb/Nd and Pb/Ce) in basaltic and komatiitic rocks. These geochemical proxies display a significant increase in magnitude and variability after ~3.2 Ga. We hypothesize that rapid increases in mantle heterogeneity indicate the recycling of supracrustal materials back into Earth's mantle via subduction. Our new observations thus point to a ≥ 3.2 Ga onset of global subduction processes via plate tectonics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289823PMC
http://dx.doi.org/10.1038/s41598-020-66324-yDOI Listing

Publication Analysis

Top Keywords

incompatible elements
12
mantle
11
billion years
8
years ago
8
plate tectonics
8
highly incompatible
8
earth's mantle
8
mantle subduction
8
trace element
8
mantle re-enrichment/refertilization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!