Termination of Transcription by RNA Polymerase II: BOOM!

Trends Genet

The Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK. Electronic address:

Published: September 2020

RNA polymerase II (Pol II) transcribes hundreds of thousands of transcription units - a reaction always brought to a close by its termination. Because Pol II transcribes multiple gene types, its termination occurs in a variety of ways, with the polymerase being responsive to different inputs. Moreover, it is not just a default process occurring at the end of genes. Promoter-proximal and premature termination is common and might in turn regulate gene expression levels. Although some transcription termination mechanisms have been debated for decades, research is only just underway on emergent processes. We provide an updated view of transcription termination in human cells, highlighting common themes and some interesting differences between the contexts in which it occurs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tig.2020.05.008DOI Listing

Publication Analysis

Top Keywords

rna polymerase
8
pol transcribes
8
transcription termination
8
termination
6
termination transcription
4
transcription rna
4
polymerase boom!
4
boom! rna
4
polymerase pol
4
transcribes hundreds
4

Similar Publications

Full-length hepatitis B virus (HBV) transcripts of chimpanzees and patients treated with multidose (MD) HBV siRNA ARC-520 and entecavir (ETV) were characterized by single-molecule real-time (SMRT) sequencing, identifying multiple types of transcripts with the potential to encode HBx, HBsAg, HBeAg, core, and polymerase, as well as transcripts likely to be derived from dimers of dslDNA, and these differed between HBeAg-positive (HBeAg+) and HBeAg-negative (HBeAg-) individuals. HBV transcripts from the last follow-up ~30 months post-ARC-520 treatment were categorized from one HBeAg+ (one of two previously highly viremic patients that became HBeAg- upon treatment and had greatly reduced cccDNA products) and four HBeAg- patients. The previously HBeAg+ patient received a biopsy that revealed that he had 3.

View Article and Find Full Text PDF

This study evaluated influenza A virus (IAV) detection and genetic diversity over time, specifically at the human-swine interface in breeding and nursery farms. Active surveillance was performed monthly in five swine farms in the Midwest United States targeting the employees, the prewean piglets at sow farms, and the same cohort of piglets in downstream nurseries. In addition, information was collected at enrollment for each employee and farm to assess production management practices, IAV vaccination status, diagnostic procedures, and biosecurity.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.

View Article and Find Full Text PDF

Bats are recognized as natural reservoirs for an array of diverse viruses, particularly coronaviruses, which have been linked to major human diseases like SARS-CoV and MERS-CoV. These viruses are believed to have originated in bats, highlighting their role in virus ecology and evolution. Our study focuses on the molecular characterization of bat-derived coronaviruses (CoVs) in Canada.

View Article and Find Full Text PDF

Strawberry viruses are significant pathogenic agents in strawberry. The development and application of efficient virus detection technology can effectively reduce the economic losses incurred by virus diseases for strawberry cultivators. In order to rapidly identify strawberry virus species and prevent the spread of virus disease, a multiplex reverse transcription polymerase chain reaction system was established for the simultaneous detection and identification of strawberry mild yellow edge virus (SMYEV), strawberry vein banding virus (SVBV), strawberry mottle virus (SMoV), strawberry polerovirus 1 (SPV-1), strawberry pallidosis-associated virus (SPaV), and strawberry crinivirus 4 (SCrV-4).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!