Genetic localization of the orevactaene/epipyrone biosynthetic gene cluster in Epicoccum nigrum.

Bioorg Med Chem Lett

Department of Biological Sciences and Bioinformatics, Myongji University, Yongin-si, Gyunggi-do 17058, Republic of Korea. Electronic address:

Published: July 2020

Epipyrone (EPN)-A (syn. orevactaene) is a polyketide compound of 3-d-galactosyl-4-hydroxy-2-pyrone with a modified heptaene acyl moiety, produced from Epicoccum nigrum and was reported to have various biological activities. Genome analysis identified a hypothetical EPN biosynthetic gene cluster (BGC) composed of the four genes epnABCD, which encode a highly-reducing fungal polyketide synthase, a glycosyltransferase, a cytochrome P450, and a transporter. The individual gene inactivation of epnABC resulted in the total loss of EPN production, while the inactivation of a nearby transcription factor-encoding gene had no effect on the production of EPN, substantiating that epnABCD is the EPN BGC. mRNA expression indicated no epnA transcription in the epnB knockout mutant and the occurrence of the bicistronic transcription of epnAB. This study defined an EPN BGC, which is the first blueprint reported for glycosylated 2-pyrone polyketide biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2020.127242DOI Listing

Publication Analysis

Top Keywords

biosynthetic gene
8
gene cluster
8
epicoccum nigrum
8
epn bgc
8
epn
5
genetic localization
4
localization orevactaene/epipyrone
4
orevactaene/epipyrone biosynthetic
4
gene
4
cluster epicoccum
4

Similar Publications

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

Complex transcription regulation of acidic chitinase suggests fine-tuning of digestive processes in Drosera binata.

Planta

January 2025

Institute of Plant Genetics and Biotechnology, Plant Science and Biodiversity Center, Slovak Academy of Sciences, Akademicka 2, P. O. Box 39A, 950 07, Nitra, Slovak Republic.

DbChitI-3, Drosera binata's acidic chitinase, peaks at pH 2.5 from 15 °C to 30 °C. Gene expression is stimulated by polysaccharides and suppressed by monosaccharide digestion, implying a feedback loop in its transcriptional regulation.

View Article and Find Full Text PDF

Among all photosynthetic life forms, cyanobacteria exclusively possess a water-soluble, light-sensitive carotenoprotein complex known as orange carotenoid proteins (OCPs), crucial for their photoprotective mechanisms. These protein complexes exhibit both structural and functional modularity, with distinct C-terminal (CTD) and N-terminal domains (NTD) serving as light-responsive sensor and effector regions, respectively. The majority of cyanobacterial genomes contain genes for OCP homologs and related proteins, highlighting their essential role in survival of the organism over time.

View Article and Find Full Text PDF

Liaoning cashmere goat is an outstanding breed in China primarily for cashmere production, with strict controls against genetic outflow. Melatonin(MT) is a key factor affecting cashmere growth, and preliminary transcriptome sequencing indicated that melatonin upregulates the expression of the PIP5K1A gene in skin fibroblasts. To predict the physicochemical properties of PIP5K1A in Liaoning cashmere goats, ascertain the tissue localization of PIP5K1A in their skin, and explore the role and mechanism of PIP5K1A in the proliferation of skin fibroblasts.

View Article and Find Full Text PDF

Elevated MRPS23 expression facilitates aggressive phenotypes in breast cancer cells.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China.

Mitochondrial ribosomal protein S23 (MRPS23), encoded by a nuclear gene, is a well-known driver of proliferation in cancer. It participates in mitochondrial protein translation, and its expression association has been explored in many types of cancer. However, MRPS23 expression associations are rarely reported in breast cancer (BC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!