Interaction of soy protein isolate fibrils with betalain from red beetroots: Morphology, spectroscopic characteristics and thermal stability.

Food Res Int

Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Published: September 2020

Betalain has been reported as water-soluble, nitrogenous pigments with biological activities. However, their sensitivity to thermal degradation limits their application during food processing. In this report, the interaction of betalain and soy protein isolate fibrils (SPI-F) was investigated through multiple microscopic and spectroscopic techniques and the thermal stability of betalain was assessed after heating treatment. AFM and TEM images showed that the complex of betalain and SPI-F was small, amorphous aggregate. Fluorescence spectroscopy revealed that SPI-F bound with betalain via hydrophobic interactions. Circular dichroism results showed the secondary structures of SPI-F was changed by betalain binding, with a decrease in α-helix (7.5-6.9%), β-turn (13.1-12.9%) and random coil (41.1-40.7%) and an increase in β-Sheet (38.3-39.5%). The addition of SPI-F decreased color loss and increased the thermal retention of betalain from 55.3% to 75.9%. These findings suggest that SPI-F has a protective effect on the thermal stability of betalain and facilitate the widespread application of betalain as natural colorants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2020.109289DOI Listing

Publication Analysis

Top Keywords

thermal stability
12
stability betalain
12
betalain
10
soy protein
8
protein isolate
8
isolate fibrils
8
spi-f
6
thermal
5
interaction soy
4
fibrils betalain
4

Similar Publications

Exploring the noncovalent interaction between β-lactoglobulin and flavonoids under nonthermal process: Characterization, physicochemical properties, and potential for lycopene delivering.

Food Chem X

January 2025

Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China.

The poor structure stability and low bioavailability of lycopene (LY) hampers the wide application in food field. Thus, it is crucial to explore novel deliver carrier for LY based on protein-flavonoid complexes. In this study, the noncovalent interaction mechanism between β-lactoglobulin (β-LG) and flavonoids (apigenin (API), luteolin (LUT), myricetin (MY), apigenin-7-O-glucoside, luteolin-7-O-glucoside, and myricetrin) under ultrasound treatment was explored.

View Article and Find Full Text PDF

This study investigates the significance of single-walled (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes with a convectional fluid (water) over a vertical cone under the influences of chemical reaction, magnetic field, thermal radiation and saturated porous media. The impact of heat sources is also examined. Based on the flow assumptions, the fundamental flow equations are modeled as partial differential equations (PDEs).

View Article and Find Full Text PDF

Insights into the electroactive impact of magnetic nanostructures in PVDF composites small-angle neutron scattering.

Nanoscale

January 2025

Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, 4710-057 Braga, Portugal.

Poly(vinylidene fluoride) (PVDF) is technologically relevant due to its thermal stability; chemical, mechanical and radiation resistance; transparency; biocompatibility; and ease of processing. Several of those applications are related to its high electroactivity, for which the β-phase of the polymer is its most renowned protagonist. In this context, extensive research has been conducted on the crystallization of PVDF in the β-phase, when processed from melt and from solution.

View Article and Find Full Text PDF

In-situ Polymerization Induced Seed-Root Anchoring Structure for Enhancing Stability and Efficiency in Perovskite Solar Modules.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.

The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.

View Article and Find Full Text PDF

Fluoropolymer-Single Crystal Nanocomposite Based Transducer Fabrication for Bio-Imaging.

Adv Healthc Mater

January 2025

Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.

Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!