Evaporation Dynamics in Buried Nanochannels with Micropores.

Langmuir

Department of Mechanical & Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States.

Published: July 2020

Cross-connected buried nanochannels of height ∼728 nm, with micropores of ∼2 μm diameter present at each intersection, are used in this work to numerically and experimentally study droplet-coupled evaporation dynamics at room temperature. The uniformly structured channels/pores, along with their well-defined porosity, allow for computational fluid dynamics simulations and experiments to be performed on the same geometry of samples. A water droplet is placed on top of the sample causing water to wick into the nanochannels through the micropores. After advancing, the meniscus front stabilizes when evaporation flux is balanced with the wicking flux, and it recedes once the water droplet is completely wicked in. Evaporation flux at the meniscus interface of channels/pores is estimated over time, while the flux at the water droplet interface is found to be negligible. When the meniscus recedes in the channels, local contact line regions are found to form underneath the pores, thus rapidly enhancing evaporation flux as a power-law function of time. Temporal variation of wicking flux velocity and pressure gradient in the nanochannels is also independently computed, from which the viscous resistance variation is estimated and compared to the theoretical prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c00777DOI Listing

Publication Analysis

Top Keywords

water droplet
12
evaporation flux
12
evaporation dynamics
8
buried nanochannels
8
nanochannels micropores
8
wicking flux
8
flux
6
evaporation
5
dynamics buried
4
nanochannels
4

Similar Publications

Surface-enhanced Raman scattering (SERS) is a powerful optical sensing platform that amplifies the target signals by Raman scattering. Despite SERS enabling a meager detection limit, even at the single-molecule level, SERS also tends to equally enhance unwanted molecules due to the non-specific binding of noise molecules in clinical samples, which complicates its use in complex samples such as bodily fluids, environmental water, or food matrices. To address this, we developed a novel non-fouling biomimetic SERS sensor by self-assembling an anti-adhesive, anti-fouling, and size-selective Lubricin (LUB) coating on gold nanoparticle (AuNP) functionalized glass slide surfaces via a simple drop-casting method.

View Article and Find Full Text PDF

Inspired by the ultrafast directional water transport structure of Sarracenia trichomes, hierarchical textured surfaces with specific microgrooves were prepared based on laser processing combined with dip modification, in response to the growing problem of freshwater scarcity. The prepared surfaces were tested for droplet transport behavior to investigate the relationship between the surface structure and the driving force of directional water transport and their effects on the water transport distance and water transport velocity. The results showed that surfaces with a superhydrophobic background associated channels of multirib structures, and a dual-gradient surface of gradient hydrophobic background associated channels with gradient structure performed the best in terms of water transport efficiency.

View Article and Find Full Text PDF

To form nonspherical emulsion droplets, the interfacial tension driving droplet sphericity must be overcome. This can be achieved through interfacial particle jamming; however, careful control of particle coverage is required. In this work, we present a scalable novel batch process to form nonspherical particle-stabilized emulsions.

View Article and Find Full Text PDF

Rain erosion induced by raindrops impacting wind turbine blades at high velocity can change the aerodynamic characteristics of the blades and increase maintenance costs. Previous numerical studies on rain erosion have not considered the curvature of the blade leading-edge surfaces and assumed them to be flat surfaces. This study established a fluid-solid coupled numerical model combining the finite element method and smooth particle hydrodynamics.

View Article and Find Full Text PDF

Deposition of Water Vapor on Au(001) Substrates: Effect of Temperature and Deposition Frequency.

J Phys Chem Lett

December 2024

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, People's Republic of China.

Ice formation from water vapor is a common phenomenon with significant implications for both natural ice formation and industrial processes. However, there remains controversy over how deposition frequency and substrate temperature affect the structural forms of deposition products and their formation processes. In this study, we employed molecular dynamics simulations to investigate the deposition process of water vapor onto a cold Au(001) substrate at different temperatures and deposition frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!