We prepared the hybrid conductor of the Ag nanowire (NW) network and irregularly patterned graphene (GP) mesh with enhanced optical transmittance (~98.5%) and mechano-electric stability (Δ: ~42.4% at 200,000 (200k) cycles) under 6.7% strain. Irregularly patterned GP meshes were prepared with a bottom-side etching method using chemical etchant (HNO). The GP mesh pattern was judiciously and easily tuned by the regulation of treatment time (0-180 min) and concentration (0-20 M) of chemical etchants. As-formed hybrid conductor of Ag NW and GP mesh exhibit enhanced/controllable electrical-optical properties and mechano-electric stabilities; hybrid conductor exhibits enhanced optical transmittance ( = 98.5%) and improved conductivity (Δ: 22%) compared with that of a conventional hybrid conductor at similar . It is also noteworthy that our hybrid conductor shows far superior mechano-electric stability (Δ: ~42.4% at 200k cycles; : ~98.5%) to that of controls (Ag NW (Δ: ~293% at 200k cycles), Ag NW-pristine GP hybrid (Δ: ~121% at 200k cycles)) ascribed to our unique hybrid structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345882 | PMC |
http://dx.doi.org/10.3390/mi11060578 | DOI Listing |
ACS Omega
December 2024
UCL Institute for Materials Discovery, University College London, Malet Place, London WC1E 7JE, United Kingdom.
Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs.
View Article and Find Full Text PDFSoft Matter
December 2024
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China.
Understanding the interplay among the mechanical behavior, ionic conductivity and chain dynamics of ionogels is essential for designing flexible conductors that exhibit both high conductivity and excellent mechanical properties. In this study, ionogels were synthesized the radical polymerization of ,'-dimethylacrylamide (DMAA) and methacrylic acid (MAAc) monomers in the presence of ionic liquid 1-ethyl-3-methylimidazolium trifluoromethane sulfonate ([EMIM][OTf]). By varying the mass content of ionic liquid within ionogels, we investigated the mechanical behavior and ionic conductivity at the macroscopic scale using tensile, rheological testing and electrochemical impedance spectroscopy, as well as the dynamic behavior of chain segments and ions within the network at the microscopic scale using broadband dielectric relaxation spectroscopy (BDS) over a broad temperature range.
View Article and Find Full Text PDFInorg Chem
December 2024
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0FS, U.K.
ABX-type hybrid organic-inorganic structures have recently emerged as a new class of meltable materials. Here, by the use of phenylphosphonium derivatives as A cation, we study liquid- and glass-forming behavior of a new family of hybrid structures, (RPhP)[Mn(dca)] (R = Me, Et, Ph; dca = dicyanamide). These new compounds melt at 196-237 °C () and then vitrify upon cooling to room temperature, forming glasses.
View Article and Find Full Text PDFDiscov Nano
December 2024
IMDEA Materials Institute, C/Eric Kandel 2, 28906, Getafe, Madrid, Spain.
New materials for electrical conductors, energy storage, thermal management, and structural elements are required for increased electrification and non-fossil fuel use in transport. Appropriately assembled as macrostructures, nanomaterials can fill these gaps. Here, we critically review the materials science challenges to bridge the scale between the nanomaterials and the large-area components required for applications.
View Article and Find Full Text PDFAdv Mater
December 2024
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
Stretchable electronic devices that conduct strain-related electronic performances have drawn extensive attention, functioning as mechanical sensors, actuators, and stretchable conductors. Although strain-insensitive or strain-responsive nature is well-achieved separately, it remains challenging to combine these two characteristics in one single device, which will offer versatile adaptability in various working situations. Herein, a hybrid material with sign-switchable Poisson's ratio (SSPR) is developed by combining a phase-change gel based reentrantreentrant honeycomb pattern and a polydimethylsiloxane film.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!