Temporal Dynamics of the Gut Bacteriome and Mycobiome in the Weanling Pig.

Microorganisms

Animal Biosciences and Biotechnology Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.

Published: June 2020

Weaning is a period of environmental changes and stress that results in significant alterations to the piglet gut microbiome and is associated with a predisposition to disease, making potential interventions of interest to the swine industry. In other animals, interactions between the bacteriome and mycobiome can result in altered nutrient absorption and susceptibility to disease, but these interactions remain poorly understood in pigs. Recently, we assessed the colonization dynamics of fungi and bacteria in the gastrointestinal tract of piglets at a single time point post-weaning (day 35) and inferred interactions were found between fungal and bacterial members of the porcine gut ecosystem. In this study, we performed a longitudinal assessment of the fecal bacteriome and mycobiome of piglets from birth through the weaning transition. Piglet feces in this study showed a dramatic shift over time in the bacterial and fungal communities, as well as an increase in network connectivity between the two kingdoms. The piglet fecal bacteriome showed a relatively stable and predictable pattern of development from to , as seen in other studies, while the mycobiome demonstrated a loss in diversity over time with a post-weaning population dominated by . The mycobiome demonstrated a more transient community that is likely driven by factors such as diet or environmental exposure rather than an organized pattern of colonization and succession evidenced by fecal sample taxonomic clustering with nursey feed samples post-weaning. Due to the potential tractability of the community, the mycobiome may be a viable candidate for potential microbial interventions that will alter piglet health and growth during the weaning transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356342PMC
http://dx.doi.org/10.3390/microorganisms8060868DOI Listing

Publication Analysis

Top Keywords

bacteriome mycobiome
12
fecal bacteriome
8
weaning transition
8
mycobiome demonstrated
8
mycobiome
6
temporal dynamics
4
dynamics gut
4
bacteriome
4
gut bacteriome
4
mycobiome weanling
4

Similar Publications

Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as and , were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as and , increased in abundance.

View Article and Find Full Text PDF

Allergic rhinitis (AR) and asthma (AS) are two of the most common chronic respiratory diseases and a major public health concern. Multiple studies have demonstrated the role of the nasal bacteriome in AR and AS, but little is known about the airway mycobiome and its potential association to airway inflammatory diseases. Here we used the internal transcriber spacers (ITS) 1 and 2 and high-throughput sequencing to characterize the nasal mycobiome of 339 individuals with AR, AR with asthma (ARAS), AS and healthy controls (CT).

View Article and Find Full Text PDF

The early microbial colonization of the porcine gut is an important priming factor for gut and immune development. Nevertheless, little is known about the composition of microbes that translocate into the ileo-cecal lymph nodes (ICLN) in the neonatal phase. This study aimed to characterize age- and nutrition-related changes in the metabolically active bacterial and fungal composition of the ICLN in suckling and newly weaned piglets.

View Article and Find Full Text PDF

The connection between the gut mycobiome and atherosclerotic cardiovascular disease (ACVD) is largely uncharted. In our study, we compared the gut fungal communities of 214 ACVD patients with those of 171 healthy controls using shotgun metagenomic sequencing and examined their interactions with gut bacterial communities and network key taxa. The gut mycobiome composition in ACVD patients is significantly different, showing a rise in opportunistic pathogens like , , and , with and showing the most significant changes (Wilcoxon rank-sum test, < 0.

View Article and Find Full Text PDF

Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!