The intensive use of glyphosate in industrial agriculture may lead to freshwater contamination, encouraging studies of its toxic effect on non-target aquatic organisms. Glyphosate-based commercial formulations contain adjuvants, making them even more toxic than the active ingredient (a.i.) itself. The golden mussel Limnoperna fortunei is a freshwater invasive species which has been found to increase glyphosate dissipation in water and to accelerate eutrophication. The aim of this study is to evaluate the capability of L. fortunei to reduce the concentration of glyphosate in two commercial formulations, Roundup Max® and Glifosato Atanor®. Results were compared with the decay of the a.i. alone and in presence of mussels. Evasive response and toxicity tests were performed in a first set of trials to analyze the response of L. fortunei exposed to Roundup Max® and Glifosato Atanor®. Subsequently, we conducted a 21-day degradation experiment in 2.6-L microcosms applying the following treatments: 6 mg L of technical-grade glyphosate (G), Glifosato Atanor® (A), Roundup Max® (R), 20 mussels in dechlorinated tap water (M), and the combination of mussels and herbicide either in the technical-grade (MG) or formulated form (MA and MR) (all by triplicate). Samples were collected at days 0, 1, 7, 14 and 21. No significant differences in glyphosate decay were found between treatments with mussels (MG: 2.03 ± 0.40 mg L; MA: 1.60 ± 0.32 mg L; MR: 1.81 ± 0.21 mg L), between glyphosate as a.i. and the commercial formulations, and between the commercial formulations, suggesting that the adjuvants did not affect the degrading potential of L. fortunei. In addition to the acceleration of glyphosate dissipation in water, there was an increase in the concentration of dissolved nutrients in water (N-NH and P-PO) even higher than that caused by the filtering activity of the mussels, probably resulting from stress or from the degradation of glyphosate and adjuvants. We believe that a larger bioavailability of these nutrients due to glyphosate metabolization mediated by mussels would accelerate eutrophication processes in natural water bodies. The approach used here, where L. fortunei was exposed to two commercial formulations actually used in agricultural practices, sheds light on the potential impact of glyphosate decay on water bodies invaded by this species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2020.110794 | DOI Listing |
Front Med (Lausanne)
January 2025
Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China.
Background: Chronic Kidney Disease (CKD) is an escalating public health concern in the United States, linked with significant morbidity, mortality, and healthcare costs. Despite known risk factors like age, hypertension, and diabetes, comprehensive studies examining temporal trends in CKD prevalence are scarce. This study aims to analyze these trends using data from the National Health and Nutrition Examination Survey (NHANES).
View Article and Find Full Text PDFFront Neuroinform
January 2025
Centre Borelli, Université Paris Cité, UMR 9010, CNRS, Paris, France.
This article develops a fundamental insight into the behavior of neuronal membranes, focusing on their responses to stimuli measured with power spectra in the frequency domain. It explores the use of linear and nonlinear (quadratic sinusoidal analysis) approaches to characterize neuronal function. It further delves into the random theory of internal noise of biological neurons and the use of stochastic Markov models to investigate these fluctuations.
View Article and Find Full Text PDFFront Microbiol
January 2025
Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Prague, Czechia.
Introduction: is a significant human pathogen with the ability to form biofilms, a critical factor in its resistance to antifungal treatments. This study aims to evaluate the antifungal activity and biofilm inhibition potential of Tea Tree Oil (TTO) derived from cultivated in Vietnam.
Methods: The antifungal activity of TTO was assessed by determining the Minimum Inhibitory Concentration (MIC), Minimum Fungicidal Concentration (MFC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) using broth dilution methods.
Front Bioeng Biotechnol
January 2025
Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China.
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options.
View Article and Find Full Text PDFCureus
December 2024
Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed To Be University), Karad, IND.
Background The emergence of treatment-resistant species has highlighted the importance of antifungal susceptibility testing as it is difficult to determine therapeutics solely based on species identification. However, as compared to bacterial pathogens, antimicrobial susceptibility testing in fungi still remains underutilized in most clinical diagnostic microbiological services. The disc diffusion (DD) technique is reported to be easy and cost-effective and therefore can be easily incorporated as a routine method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!