The Guanzhong basin is a part of the three top priority regions in China's blue sky action as of 2019. Understanding the chemical composition, sources, and atmospheric process of aerosol in this region is therefore imperative for improving air quality. In this study, we present, for the first time, the seasonal variations of organic aerosol (OA) in Xi'an, the largest city in the Guanzhong basin. Biomass burning OA (BBOA) and oxidized OA (OOA) contributed >50% of OA in both autumn and winter. The average concentrations of BBOA in autumn (14.8 ± 5.1 μg m) and winter (11.6 ± 6.8 μg m) were similar. The fractional contribution of BBOA to total OA, however, decreased from 31.9% in autumn to 15.3% in winter, because of enhanced contributions from other sources in winter. The OOA fraction in OA increased largely from 20.9% in autumn to 34.9% in winter, likely due to enhanced emissions of precursors and stagnant meteorological conditions which facilitate the accumulation and secondary formation. A large increase in OOA concentration was observed during polluted days, by a factor of ~4 in autumn and ~6 in winter compared to clean days. In both seasons, OOA formation was most likely dominated by photochemical oxidation when aerosol liquid water content was <30 μg m or by aqueous-phase processes when O was <35 ppb. A higher concentration of BBOA was observed for air masses circulated within the Guanzhong basin (16.5-18.1 μg m), compared to air masses from Northwest and West (10.9-14.5 μg m). Furthermore, compared with OA fraction in non-refractory PM in other regions of China, BBOA (17-19%) and coal combustion OA (10-20%) were major emission sources in the Guanzhong Basin and the BTH region, respectively, whereas OOA (10-34%) was an important source in all studied regions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139666DOI Listing

Publication Analysis

Top Keywords

seasonal variations
8
organic aerosol
8
aerosol xi'an
8
biomass burning
8
secondary formation
8
guanzhong basin
8
autumn winter
8
winter enhanced
8
winter
6
autumn
5

Similar Publications

Emergency departments (EDs) encounter substantial challenges during peak vacation periods, including increased patient volumes, limited access to medical histories, language and cultural barriers, insurance complexities, and disruptions in continuity of care. These factors strain emergency department operations, resulting in prolonged wait times, diagnostic errors, and compromised care quality. This study reviews the literature to identify patient satisfaction indicators and common challenges and evaluate strategies to improve patient outcomes during vacation-related emergency department visits.

View Article and Find Full Text PDF

Impacts of birth season and production system on gastrointestinal parasitism and growth in Katahdin lambs.

Transl Anim Sci

December 2024

Cooperative Research, College of Agriculture, Environmental and Human Sciences, Lincoln University of Missouri, Jefferson City, MO 65102, USA.

Gastrointestinal nematode (GIN) infection adversely affects the performance and well-being of forage-based sheep throughout the world. The study objectives were to estimate longitudinal differences between birth seasons and production systems for lamb postweaning growth and indicators of GIN infection. Data were collected on Katahdin lambs within a single flock from 2006 to 2022.

View Article and Find Full Text PDF

Background: Subtropical forest plant diversity, characterized by a wide range of species adapted to seasonal variations, is vital for sustaining ecological balance, supporting diverse wildlife, and providing critical ecosystem services such as carbon sequestration and soil stabilization. The Changa Manga Forest, an ecologically rich area with varied vegetation, was analyzed to understand the intricate relationship between plant diversity and environmental factors. This study investigates the diversity patterns, vegetation structure, and environmental influences on forest biodiversity.

View Article and Find Full Text PDF

Approximately 20 million cases and 0.15 million human fatalities worldwide each year are caused by Salmonellosis. A mechanistic compartmental model based on ordinary differential equations is proposed to evaluate the effects of temperature and pH on the transmission dynamics of Salmonellosis.

View Article and Find Full Text PDF

Aerosol particles in the PM fraction considerably influence the climate-related effects of aerosols and impact human health despite representing very variable fractions of the total aerosol mass concentration. Aerosol optical measurement techniques (aerosol light scattering) may not be sufficiently effective for detecting all particles in the PM fraction, particularly regarding number concentration. The present study investigates temporal variations of aerosol light scattering properties and particle number concentration (PNC) at different size modes in the PM fraction at the atmospheric site ATOLL (The Atmospheric Observations in Lille), Northern France from January 2018 to February 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!