Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Anaerobic ammonium oxidation coupled with iron reduction is termed as Feammox, and is a new nitrogen removal process. However, there is a paucity of studies on the response of nutrient additions on Feammox process in farmland ecosystems. In this study, we investigated the shifts of Feammox and iron-reducers under nitrogen (N) and phosphorus (P) applications via isotopic tracing and high-throughput sequencing technology. In the isotopic tracing experiment, Feammox rates was significantly greater in the N and/or P applications soil (0.184-0.239 μg N g day) than in the no fertilizer soil (0.172 μg N g day). The results indicated that N and P applications could favor the Feammox reaction. Molecular analysis showed that five predominant iron-reducing bacteria, including Geobacter, Anaeromyxobacter, Pseudomonas, Thiobacillus and Bacillus, were detected. Their abundance in the soil with no fertilizer, N, P and N combined with P was 0.93%, 1.11%-1.71%, 0.99%, and 1.40%-1.75%, respectively. This implied that iron-reducing bacteria can be stimulated under N and P applications. Overall, the results of this study demonstrated that N and/or P applications could alter the activity of Feammox, and modulate the potential of IRB in the farmland soils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.139849 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!