Trace elements contamination assessment in marine sediments from different regions of the Caribbean Sea.

J Hazard Mater

International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, 98000 Principality of Monaco, Monaco.

Published: November 2020

Trace elements (TEs), rare earth elements (REEs), and methylmercury (MeHg) concentrations as well as mercury (Hg) and lead (Pb) isotope compositions in sediment samples collected from strategic locations along the Caribbean Sea were determined. The analyzed sediment samples were collected at different core depths from localities in Colombia, Cuba, Haiti, and the Dominican Republic. The evaluation of pollution assessment indices i.e. enrichment factors and geoaccumulation index revealed significant enrichment of several priority substances, such as Pb, Cd and Hg, in most of the sampling sites. Hg was found in extremely high concentrations (up to 22 ± 3 mg kg) in bottom samples of Colombian core, which led the authors to further investigate this area with respect to the source for Hg contamination. The analysis of Hg isotope ratios in Colombian sediments and the Pb isotope ratios in all studied cores, helped in the identification of likely pollution sources and represents a critically important record of anthropogenic influence in the region. Finally, the REEs patterns determined in all samples, also provide a needed baseline for these contaminants in the Caribbean region.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122934DOI Listing

Publication Analysis

Top Keywords

trace elements
8
caribbean sea
8
sediment samples
8
samples collected
8
isotope ratios
8
elements contamination
4
contamination assessment
4
assessment marine
4
marine sediments
4
sediments regions
4

Similar Publications

Physicochemical Characterization of Gallstone Surfaces to Predict Their Interaction with Salmonella Typhi.

Curr Microbiol

January 2025

Industrial and Surface Engineering Laboratory, Bioprocess and Biointerfaces Team, Department of Life Sciences, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.

Salmonella Typhi can adhere to and build biofilms on the surface of gallstones causing abnormal gallbladder mucosa, which could lead to carcinogenesis. The surface physicochemical properties of microbial cells and materials have been shown to play a crucial role in adhesion. Therefore, the purpose of this study was to investigate, for the first time, the surface properties of nine gallstones and to evaluate the influence of these parameters on the theoretical adhesion of S.

View Article and Find Full Text PDF

Mechanism of microplastics in the reduction of cadmium toxicity in tomato.

Ecotoxicol Environ Saf

January 2025

College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China. Electronic address:

Soil pollution by microplastics (MPs) and cadmium (Cd) poses significant threats to agricultural production, yet their combined toxicity and underlying mechanisms remain poorly understood. Here, we examined the effects of three types of MPs-polyethylene (PE), polyvinyl chloride (PVC) and polypropylene (PP)-with particle sizes of 150 μm and 10 μm, in combination with Cd stress (5 mg/kg) on tomato (Solanum lycopersicum L.) growth.

View Article and Find Full Text PDF

Ascorbic acid (AA) is used as a food additive for its antibacterial and antioxidant properties. However, excessive intake of AA is harmful to humans. Therefore, the detection of Fe and AA is generally recognized to be meaningful.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a primary malignant neoplasm exhibiting a high mortality rate. Taxifolin is a naturally occurring flavonoid compound that exhibits a range of pharmacological properties. The effects of taxifolin on HCC remain largely unexplored.

View Article and Find Full Text PDF

Adsorption properties and mechanisms of Cd by co-pyrolysis composite material derived from peanut biochar and tailing waste.

Environ Geochem Health

January 2025

College of Resource and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resource, Wuhan University of Science and Technology, Wuhan, 430081, People's Republic of China.

Cadmium (Cd) contamination in aquatic systems is a widespread environmental issue. In this study, a solid waste iron tailings and biochar hybrid (Fe-TWBC) was successfully synthesized derived from co-pyrolysis of peanut shell and tailing waste (Fe-TW). Characterization analyses showed that the metal oxides from solid waste iron tailings successfully loaded onto the biochar surface, with more functional groups in Fe-TWBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!