Studying the biochemistry of yeast cells has enabled scientists to understand many essential cellular processes in human cells. Further development of biotechnological and medical progress requires revealing surface chemistry in living cells by using a non-destructive and molecular structure sensitive technique. In this study shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was applied for probing the molecular structure of Metschnikowia pulcherrima yeast cells. Important function of studied cells is the ability to eliminate iron from growth media by precipitating the insoluble pigment pulcherrimin. Comparative SERS and SHINERS analysis of the yeast cells in combination with bare Au and shell-isolated Au@SiO nanoparticles were performed. It was observed that additional bands, such as adenine ring-related vibrational modes appear due to interaction with bare Au nanoparticles; the registered spectra do not coincide with the spectra where Au@SiO nanoparticles were used. SHINERS spectra of M. pulcherrima were significantly enhanced comparing to the Raman spectra. Based on first-principles calculations and 830-nm excited Raman analysis of pulcherrimin, the SHINERS signatures of iron pigment in yeast cells were revealed. Being protected from direct interaction of metal with adsorbate, Au@SiO nanoparticles yield reproducible and reliable vibrational signatures of yeast cell wall constituents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2020.118560DOI Listing

Publication Analysis

Top Keywords

yeast cells
20
au@sio nanoparticles
12
shell-isolated nanoparticle-enhanced
8
nanoparticle-enhanced raman
8
raman spectroscopy
8
cells
8
molecular structure
8
yeast
6
raman
4
spectroscopy characterization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!