Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is a high demand for high performance, effective and eco-friendly corrosion inhibitors for industrial applications. Therefore, novel benign high performance corrosion inhibitors based on biopolymer were synthesized in-situ using different cellulosic materials and niacin. Characterization of the cellulose nano-composite was carried out by Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). The anticorrosive performance of cellulose composites for copper in 3.5% NaCl solutions were evaluated using polarization and electrochemical impedance spectroscopy (EIS) techniques. Surface morphology of uninhibited and inhibited composites was studied using SEM and EDX. Potentiodynamic polarization measurements confirmed that cellulose based inhibitors act as a mixed type inhibitor. The inhibition efficiency of ethyl cellulose-niacin composite (NEC) was 94.7% outperforms those of microcrystalline cellulose-niacin composite (NMCC) and carboxymethyl cellulose-niacin composite (NCMC) which were 33.2 and 83.4%, respectively, as green corrosion inhibitors for Copper in 3.5% NaCl solutions. The data extracted from EIS were fitted through an equivalent circuit to model the corrosion inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.06.040 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!