Cancer subtype stratification, which may help to make a better decision in treating cancerous patients, is one of the most crucial and challenging problems in cancer studies. To this end, various computational methods such as Feature selection, which enhances the accuracy of the classification and is an NP-Hard problem, have been proposed. However, the performance of the applied methods is still low and can be increased by the state-of-the-art and efficient methods. We used 11 efficient and popular meta-heuristic algorithms including WCC, LCA, GA, PSO, ACO, ICA, LA, HTS, FOA, DSOS and CUK along with SVM classifier to stratify human breast cancer molecular subtypes using mRNA and micro-RNA expression data. The applied algorithms select 186 mRNAs and 116 miRNAs out of 9692 mRNAs and 489 miRNAs, respectively. Although some of the selected mRNAs and miRNAs are common in different algorithms results, six miRNAs including miR-190b, miR-18a, miR-301a, miR-34c-5p, miR-18b, and miR-129-5p were selected by equal or more than three different algorithms. Further, six mRNAs, including HAUS6, LAMA2, TSPAN33, PLEKHM3, GFRA3, and DCBLD2, were chosen through two different algorithms. We have reported these miRNAs and mRNAs as important diagnostic biomarkers to the stratification of breast cancer subtypes. By investigating the literature, it is also observed that most of our reported mRNAs and miRNAs have been proposed and introduced as biomarkers in cancer subtypes stratification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ygeno.2020.06.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!