The development of pharmacological and biological inhibitors of receptor tyrosine kinases (RTKs) has changed the treatment paradigm of several neoplastic diseases. However, the occurrence of intrinsic and acquired resistance represents a limit to the efficacy of these drugs even in RTK-addicted cancers. The identification of innovative therapeutic approaches and rationale-based drug combinations remains a primary need to improve patients' outcome. Heparan sulfate proteoglycans (HSPGs) at the cell surface and in the extracellular matrix bind to and modulate the biological activity of a great number of heparan sulfate (HS) binding proteins. The participation of HSPGs as accessory molecules in the growth factor-receptor interactions and mechanism of activation of several RTKs provides the basis for developing alternative therapeutic strategies based on targeting HSPGs by antibodies or HS mimetics to interfere with the aberrant oncogenic signaling implicated in the pathobiology of several tumors. Here, we focus on the FGF-FGFR-HSPG and HGF-Met-HSPG axes as paradigmatic examples of the multiple-level interconnections between RTKs and HSPGs influencing cell signaling, gene expression, drug sensitivity, and promoting a permissive microenvironment for tumor growth and progression. In these reciprocal regulations, the HS degrading enzymes heparanase and endosulfatases play key roles contributing to the high structural complexity and heterogeneity of HS chains as well as to the specificity of their interaction with proteins. Actually, heparanase and endosulfatases represent, in turn, promising therapeutic targets. We also report some studies describing the effects of FGFR and Met inhibitors on the expression of genes encoding HSPGs and related enzymes, and discuss about the potential impact of these effects on drug response. Finally, we argue about the need of in-depth investigation of the role of HSPGs and their modifying enzymes in specific tumor pathologies to exploit the opportunity of combination treatments including HS mimetics or HSPG directed antibodies to improve efficacy of RTK inhibitors and overcome drug resistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2020.114084 | DOI Listing |
Zhongguo Yi Xue Ke Xue Yuan Xue Bao
December 2024
Department of Allergy, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.
Hereditary angioedema (HAE) is a rare,unpredictable,autosomal dominant disorder characterized by recurrent swelling in subcutaneous and submucosal tissue.In recent years,the pathophysiology and pathogenesis of HAE have been continuously studied and elucidated.In addition to the genes encoding complement 1 esterase inhibitors,new pathogenic variants have been identified in the genes encoding coagulation factor Ⅻ,plasminogen,angiopoietin-1,kininogen,heparan sulfate 3-O-sulfotransferase 6,and myoferlin in HAE.
View Article and Find Full Text PDFViruses
November 2024
Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.
The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.
View Article and Find Full Text PDFBMC Pulm Med
January 2025
Research Center of Occupational Medicine, Peking University Third Hospital, Beijing, 100191, China.
Elife
January 2025
Departments of Molecular & Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, United States.
Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, via G. Colombo 81, 20133 Milano, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!