Receptor tyrosine kinases and heparan sulfate proteoglycans: Interplay providing anticancer targeting strategies and new therapeutic opportunities.

Biochem Pharmacol

Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy. Electronic address:

Published: August 2020

The development of pharmacological and biological inhibitors of receptor tyrosine kinases (RTKs) has changed the treatment paradigm of several neoplastic diseases. However, the occurrence of intrinsic and acquired resistance represents a limit to the efficacy of these drugs even in RTK-addicted cancers. The identification of innovative therapeutic approaches and rationale-based drug combinations remains a primary need to improve patients' outcome. Heparan sulfate proteoglycans (HSPGs) at the cell surface and in the extracellular matrix bind to and modulate the biological activity of a great number of heparan sulfate (HS) binding proteins. The participation of HSPGs as accessory molecules in the growth factor-receptor interactions and mechanism of activation of several RTKs provides the basis for developing alternative therapeutic strategies based on targeting HSPGs by antibodies or HS mimetics to interfere with the aberrant oncogenic signaling implicated in the pathobiology of several tumors. Here, we focus on the FGF-FGFR-HSPG and HGF-Met-HSPG axes as paradigmatic examples of the multiple-level interconnections between RTKs and HSPGs influencing cell signaling, gene expression, drug sensitivity, and promoting a permissive microenvironment for tumor growth and progression. In these reciprocal regulations, the HS degrading enzymes heparanase and endosulfatases play key roles contributing to the high structural complexity and heterogeneity of HS chains as well as to the specificity of their interaction with proteins. Actually, heparanase and endosulfatases represent, in turn, promising therapeutic targets. We also report some studies describing the effects of FGFR and Met inhibitors on the expression of genes encoding HSPGs and related enzymes, and discuss about the potential impact of these effects on drug response. Finally, we argue about the need of in-depth investigation of the role of HSPGs and their modifying enzymes in specific tumor pathologies to exploit the opportunity of combination treatments including HS mimetics or HSPG directed antibodies to improve efficacy of RTK inhibitors and overcome drug resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2020.114084DOI Listing

Publication Analysis

Top Keywords

heparan sulfate
12
receptor tyrosine
8
tyrosine kinases
8
sulfate proteoglycans
8
heparanase endosulfatases
8
hspgs
6
kinases heparan
4
proteoglycans interplay
4
interplay providing
4
providing anticancer
4

Similar Publications

Advances in the Pathogenesis of Hereditary Angioedema.

Zhongguo Yi Xue Ke Xue Yuan Xue Bao

December 2024

Department of Allergy, PUMC Hospital,CAMS and PUMC,Beijing 100730,China.

Hereditary angioedema (HAE) is a rare,unpredictable,autosomal dominant disorder characterized by recurrent swelling in subcutaneous and submucosal tissue.In recent years,the pathophysiology and pathogenesis of HAE have been continuously studied and elucidated.In addition to the genes encoding complement 1 esterase inhibitors,new pathogenic variants have been identified in the genes encoding coagulation factor Ⅻ,plasminogen,angiopoietin-1,kininogen,heparan sulfate 3-O-sulfotransferase 6,and myoferlin in HAE.

View Article and Find Full Text PDF

Heparanase 2 Modulation Inhibits HSV-2 Replication by Regulating Heparan Sulfate.

Viruses

November 2024

Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA.

The host enzyme heparanase (HPSE) facilitates the release of herpes simplex virus type 2 (HSV-2) from target cells by cleaving the viral attachment receptor heparan sulfate (HS) from infected cell surfaces. HPSE 2, an isoform of HPSE, binds to but does not possess the enzymatic activity needed to cleave cell surface HS. Our study demonstrates that HSV-2 infection significantly elevates HPSE 2 protein levels, impacting two distinct stages of viral replication.

View Article and Find Full Text PDF
Article Synopsis
  • The study explored how extracellular histone H4 contributes to acute respiratory distress syndrome (ARDS) triggered by oleic acid (OA) in mice.
  • The research found that levels of histone H4 increased significantly after OA injection, correlating with the severity of ARDS, and that pre-treatment with histone H4 worsened lung edema and mortality.
  • Histone H4 activated endothelial cells through mechanisms involving heparan sulfate degradation and certain receptors, leading to inflammation and thrombus formation in the lungs.
View Article and Find Full Text PDF

Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin.

View Article and Find Full Text PDF
Article Synopsis
  • Heparanase is a key enzyme in the breakdown of heparan sulfate, contributing to tumor growth and metastasis, making it a target for cancer treatments.
  • Researchers synthesized specific trisaccharides and a tetrasaccharide that inhibit heparanase activity, focusing on glycol-split versions as potential inhibitors.
  • Studies using STD NMR and molecular docking revealed that these glycol-split trisaccharides had stronger binding and inhibitory effects against heparanase compared to their intact forms, providing insight into their mechanisms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!