DAPTOMYCIN, its membrane-active mechanism vs. that of other antimicrobial peptides.

Biochim Biophys Acta Biomembr

Department of Physics and Astronomy, Rice University, Houston, TX, USA. Electronic address:

Published: October 2020

Over 3000 membrane-active antimicrobial peptides (AMPs) have been discovered, but only three of them have been approved by the U.S. Food and Drug Administration (FDA) for therapeutic applications, i.e., gramicidin, daptomycin and colistin. Of the three approved AMPs, daptomycin is a last-line-of-defense antibiotic for treating Gram-positive infections. However its use has already created bacterial resistance. To search for its substitutes that might counter the resistance, we need to understand its molecular mechanism. The mode of action of daptomycin appears to be causing bacterial membrane depolarization through ion leakage. Daptomycin forms a unique complex with calcium ions and phosphatidylglycerol molecules in membrane at a specific stoichiometric ratio: DapCaPG. How does this complex promote ion conduction across the membrane? We hope that biophysics of peptide-membrane interaction can answer this question. This review summarizes the biophysical works that have been done on membrane-active AMPs to understand their mechanisms of action, including gramicidin, daptomycin, and underdeveloped pore-forming AMPs. The analysis suggests that daptomycin forms transient ionophores in the target membranes. We discuss questions that remain to be answered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2020.183395DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
three approved
8
gramicidin daptomycin
8
daptomycin forms
8
daptomycin
7
daptomycin membrane-active
4
membrane-active mechanism
4
mechanism antimicrobial
4
peptides 3000
4
3000 membrane-active
4

Similar Publications

Cecropin AD ameliorates pneumonia and intestinal injury in mice with mycoplasma pneumoniae by mediating gut microbiota.

BMC Vet Res

January 2025

Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.

Animals infected with mycoplasma pneumoniae not only develop respiratory diseases, but also cause digestive diseases through the lung-gut axis mediated by the intestinal flora, and vice versa. Antimicrobial peptides are characterized by their bactericidal, anti-inflammatory, and intestinal flora-regulating properties. However, the effect of cecropin AD (CAD) against mycoplasma pneumonia remains unclear.

View Article and Find Full Text PDF

Characterization of novel mutations involved in the development of resistance to colistin in Salmonella isolates from retail pork in Shanghai, China.

Int J Food Microbiol

February 2025

MOST-USDA Joint Research Center for Food Safety and NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:

Salmonella is an important foodborne pathogen that poses a significant threat to food safety. This study aims to assess the prevalence, genomic features, and colistin-resistant mechanisms of Salmonella isolates collected from 118 retail pork samples from January 2021 to January 2022 in Shanghai, China. Overall, 46 (39.

View Article and Find Full Text PDF

The growing incidence of infections caused by antibiotic-resistant strains of pathogens is one of the key challenges of the 21 century. The development of novel technological platforms based on single-cell analysis of antibacterial activity at the whole-microbiome level enables the transition to massive screening of antimicrobial agents with various mechanisms of action. The microbiome of wild animals remains largely underinvestigated.

View Article and Find Full Text PDF

Future applications of cyclic antimicrobial peptides in drug delivery.

Expert Opin Drug Deliv

January 2025

Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA.

Introduction: Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes.

View Article and Find Full Text PDF

IFN-β production induced by PRRSV is affected by GP3 quantity control and CLND4 interaction.

Vet Res

January 2025

Department of Fundamental Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an, 271018, Shandong, China.

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most harmful pathogens in the swine industry. Our previous studies demonstrated that the small extracellular domain (ECL2) of CLDN4 effectively blocks PRRSV infection. In this study, we explored the in vivo administration of swine ECL2 (sECL2) and found that it blocked HP-PRRSV infection and alleviated histopathological changes in organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!