Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DNA-encoded small molecule libraries (DELs) have enabled discovery of novel inhibitors for many distinct protein targets of therapeutic value. We demonstrate a new approach applying machine learning to DEL selection data by identifying active molecules from large libraries of commercial and easily synthesizable compounds. We train models using only DEL selection data and apply automated or automatable filters to the predictions. We perform a large prospective study (∼2000 compounds) across three diverse protein targets: sEH (a hydrolase), ERα (a nuclear receptor), and c-KIT (a kinase). The approach is effective, with an overall hit rate of ∼30% at 30 μM and discovery of potent compounds (IC < 10 nM) for every target. The system makes useful predictions even for molecules dissimilar to the original DEL, and the compounds identified are diverse, predominantly drug-like, and different from known ligands. This work demonstrates a powerful new approach to hit-finding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.0c00452 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!