Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c09495DOI Listing

Publication Analysis

Top Keywords

correction highly
4
highly stable
4
stable zinc-based
4
zinc-based metal-organic
4
metal-organic frameworks
4
frameworks corresponding
4
corresponding flexible
4
flexible composites
4
composites removal
4
removal detection
4

Similar Publications

The role of Ancestral MicroRNAs in grass inflorescence development.

J Plant Physiol

December 2024

Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks.

View Article and Find Full Text PDF

Development of machine learning models for diagnostic biomarker identification and immune cell infiltration analysis in PCOS.

J Ovarian Res

January 2025

Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. It is characterized by symptoms such as hyperandrogenemia, oligo or anovulation and polycystic ovarian, significantly impacting quality of life. However, the practical implementation of machine learning (ML) in PCOS diagnosis is hindered by the limitations related to data size and algorithmic models.

View Article and Find Full Text PDF

Curvature Dependence of Gravitational-Wave Tests of General Relativity.

Phys Rev Lett

December 2024

Center for Computational Astrophysics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA.

High-energy extensions to general relativity modify the Einstein-Hilbert action with higher-order curvature corrections and theory-specific coupling constants. The order of these corrections imprints a universal curvature dependence on observations while the coupling constant controls the deviation strength. In this Letter, we leverage the theory-independent expectation that modifications to the action of a given order in spacetime curvature (Riemann tensor and contractions) lead to observational deviations that scale with the system length scale to a corresponding power.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Background: Women are disproportionately affected by Alzheimer's disease (AD) and exhibit greater AD neuropathology than men. Women possess two X chromosomes, with one randomly silenced across each cell for dosage compensation. X chromosome inactivation (XCI) is not complete, and XCI-escaping genes provide a promising avenue of discovery for biological pathways driving sex-specific AD risk.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Amsterdam Neuroscience, Brain Imaging, Amsterdam, Netherlands.

Background: The hippocampus is highly vulnerable to amyloid-b (Aβ) and phosphorylated tau (p-tau), and shows synaptic loss in Alzheimer's disease (AD). Moreover, the loss of synapses correlates strongly with cognitive decline and leads to neuronal network dysfunction. Here, we aim to map the selective synaptic loss in hippocampal and parahippocampal subregions in AD and its association to the severity of neuropathology, axonal damage and cognitive decline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!