Sharks are an interesting group of vertebrates, as many species swim continuously to "ram" oxygen-rich seawater over their gills (ram ventilators), whereas other species "pump" seawater over their gills by manipulating buccal cavity volume while remaining motionless (buccal pumpers). This difference in respiratory physiology raises the question: What are the implications of these differences in lifestyle for circadian rhythms? We investigated the diel activity patterns of 5 species of sharks, including 3 ram ventilating species: the school shark (), the spotted estuary smooth-hound (), and the spiny dogfish (); and 2 buccal pumping species: the Port Jackson () and draughtsboard () sharks. We measured the amount, duration, and distance traveled while swimming over multiple days under a 12:12 light:dark light regime for all species and used modified light regimes for species with a clear diel rhythm in activity. We identified a surprising diversity of activity rhythms. The school shark and smooth-hound swam continuously; however, whereas the school shark swam at the same speed and covered the same distance during the day and night, the smooth-hound swam slower at night and traversed a shorter distance. A similar pattern was observed in the spiny dogfish, although this shark swam less overall. Both the Port Jackson and draughtsboard sharks showed a marked nocturnal preference for swimming. This pattern was muted and disrupted during constant light and constant dark regimes, although circadian organization of this pattern was maintained under certain conditions. The consequences of these patterns for other biological processes, such as sleep, remain unclear. Nonetheless, these 5 species demonstrate remarkable diversity within the activity rhythms of sharks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0748730420932066 | DOI Listing |
Int J Geriatr Psychiatry
January 2025
Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cognitive and Brain Sciences, Ben-Gurion University of the Negev, 1 Ben-Gurion Blvd, Beer-Sheva, Israel.
During flight, spatial disorientation (SD) commonly occurs when a pilot's perception conflicts with the aircraft's actual motion, attitude, or position. A prevalent form of SD is the somatogyral illusion, which is elicited by constant speed rotation and causes a false perception of motion in the opposite direction when the rotation ceases. This research aimed to investigate changes in brain activity that occur when experiencing a somatogyral illusion by simulating conditions closely mimicking flight conditions to gain insight into how to better manage this illusion during flight.
View Article and Find Full Text PDFHeart Rhythm
January 2025
Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, South Korea. Electronic address:
Background: There is limited information on protective factors related to atrioventricular (AV) block.
Objective: This study examines the association between accelerometer-derived moderate-to-vigorous physical activity (MVPA) and AV block in healthy elderly individuals.
Methods: A total of 23,590 UK Biobank participants ≥60 years involved in a wrist-worn accelerometer study with no history of hypertension, diabetes mellitus, dyslipidemia, and coronary heart disease were analyzed.
Sleep
January 2025
Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO USA.
Study Objectives: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) may improve sleep dysfunction, a common non-motor symptom of Parkinson disease (PD). Improvement in motor symptoms correlates with DBS-suppressed local field potential (LFP) activity, particularly in the beta frequency (13 - 30 Hz). Although well-characterized in the short term, little is known about the innate progression of these oscillations across the sleep-wake cycle.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, China.
Investigating the physiological mechanisms in the motor cortex during rehabilitation exercises is crucial for assessing stroke patients' progress. This study developed a single-channel Jansen neural mass model to explore the relationship between model parameters and motor cortex mechanisms. Firstly, EEG signals were recorded from 11 healthy participants under 20%, 40%, and 60% maximum voluntary contraction, and alpha rhythm power spectral density characteristics were extracted using the Welch power spectrum method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!