Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report a structural and functional venomics characterization of the black-tailed horned pitviper, Mixcoatlus melanurus. The venom phenotype of this small and elusive pitviper endemic to México comprise peptides and proteins of 16 toxin families whose relative abundance mirror those of neurotoxic (type II) venoms described for some species within genera distributed in Central Asia (Gloydius) and the Americas (Sistrurus, Crotalus, Ophryacus, and Bothriechis). A novel β-neurotoxic heterodimeric PLA, termed Melanurutoxin was characterized. With a relative abundance of 14.8% of the total M. melanurus venom proteome and a median lethal dose of 0.31 μg/g mouse body weight, Melanurutoxin accounted for 37.8% of the lethality of the whole venom (0.82 μg/g). The low percentage (1.1%) of snake venom metalloproteinases (PIII-SVMPs) and the high content of Melanurutoxin and bradykinin-potentiating peptides (BPP, 16%) found in the type-II venom proteome of M. melanurus correlate with the severe hypotension and neurotoxicity leading to neuromuscular blockade, flaccid paralysis and respiratory arrest observed in ex vivo neuromuscular junction experiments and in vivo experimental murine envenoming. Mexican antivenoms manufactured by Birmex and Bioclon showed low neutralization potency per vial (95 LDs, Birmex; 114 LDs, Antivipmyn®), and failed to reverse completely the paralysis and the hypotensive effect induced by the black-tailed horned pitviper, Mixcoatlus melanurus. We suggest that the impaired ability of these antivenoms to neutralize the neurotoxicity of M. melanurus venom may be attributed to the use of immunization mixtures that include venom of taxa, C. basiliscus (Birmex) and C. simus (Antivipmyn®), that contain only small amounts of Melanurutoxin-like β-neurotoxic heterodimeric PLAs. BIOLOGICAL SIGNIFICANCE: This study represents the first proteomics and funcional investigations conducted on the venom of the black-tailed horned, Mixcoatlus melanurus, a pitviper species endemic to México. The venom's features unveiled through combination of bottom-up venomics and ex vivo and in vivo functional assays provided complementary evidence pointing to severe hypotension and neurotoxicity leading to neuromuscular blockade, flaccid paralysis and respiratory arrest as the predominant mechanism of murine prey immobilization and death caused by M. melanurus. A novel β-neurotoxic heterodimeric PLA, coined Melanurutoxin, was identified as a major contributor to the lethality of the whole venom. Our study also showed the inefficacy of two commercial Mexican antivenoms to reverse competely the paralytic and hypotensive effects induced by M. melanurus venom in the murine model. We hypothesize that the impaired ability of these antivenoms to neutralize the neurotoxicity of M. melanurus venom should be ascribed to the use as immunogens of venoms that contain only small amounts of Melanurutoxin-like β-neurotoxic heterodimeric PLAs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jprot.2020.103865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!