The bacterial metabolites in supernatants of Xenorhabdus species have acaricidal activity, but this mode of entry into mites has not yet been elucidated. Herein, we report on the possible mode of entry of Xenorhabdus szentirmaii and Xenorhabdus nematophila supernatants into Tetranychus urticae (Acari: Tetranychidae) adult females. We also assessed the toxicity of the supernatants against the developmental stages of the predatory mites, Phytoseiulus persimilis and Neoseiulus californicus (Acari: Phytoseiidae). Experiments were conducted at 25 ± 1 °C, 70 ± 5% relative humidity, and 16:8h light:dark conditions. Our data showed that the bioactive acaricidal compound is most effective (86.5 to 89% mortality) when the entire integument of T. urticae comes in contact with it compared to contact of the ventral side only (26.5-34%). Against P. persimilis and N. californicus at 6 days post-application (dpa), the eggs were not affected by the X. szentirmaii or X. nematophila supernatant, whereas mortality of the mobile stages (larva, protonymph, deutonymph, adult) was 18.5% to 39.2%. Overall, the predatory mites were less affected by the bacterial metabolites than T. urticae. We hypothesize that the differences in morphology such as longer legs and thicker cuticle, as well as the diet of the predatory mites, reduce the contact of the body parts to the supernatant-treated surfaces. We need to isolate, identify, and characterize the X. szentirmaii and X. nematophila metabolite(s) and demonstrate efficacy to pestiferous mites and safety to plants, non-target organisms and the environment before it can be used as an acaricide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jip.2020.107418 | DOI Listing |
Pest Manag Sci
January 2025
Department of Entomology and Nematology, University of California, Davis, USA.
Background: Light-emitting diodes (LEDs) are being used in controlled environments to enhance crop production and pest management with most studies focusing on continuous treatments (applied throughout the entire daytime or nighttime period). Here, we tested the hypothesis that providing tomato plants with timed LED regimes (daily 3-h doses of red, blue, or far-red LED) during the day or at night may affect their traits (leaf reflectance indices, element composition, and phenolic profile), performance of two-spotted spider mites (Tetranychus urticae) (TSSM), and a species of predatory mite (Phytoseiulus persimilis).
Results: Nighttime LED regimes significantly altered leaf element composition: red LED increased K levels, blue LED enhanced Mg levels, and far-red LED enhanced Mn and Cu and reduced Zn levels.
J Econ Entomol
January 2025
Sanya Institute of China Agricultural University, Sanya, Hainan 572025, China.
Megalurothrips usitatus (Bagnall) (Thysanoptera: Thripidae) is an important pest of cowpeas, Vigna unguiculata (L.) Walp., and can cause severe damage to the crop.
View Article and Find Full Text PDFExp Appl Acarol
December 2024
Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
Tetranychus urticae Koch, commonly known as two spotted spider mites, is a major agricultural pest that causes significant economic loss. Predatory mites, such as Phytoseiulus persimilis Athias-Henriot and Neoseiulus californicus (McGregor) are important biological control agents for this pest. However, the efficacy of these predators can be compromised by pesticide application.
View Article and Find Full Text PDFPest Manag Sci
December 2024
Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guiyang, China.
Background: Neoseiulus californicus is a predatory mite that can control various spider mites and other small arthropods. Despite its acknowledged effectiveness in the natural enemy market, a crucial knowledge gap exists in understanding the genomic features related to its predatory traits and adaptation. With the increasing emphasis on modern pest management strategies and dynamic environmental changes in plant production trends, constructing a reliable genomic resource for N.
View Article and Find Full Text PDFPestic Biochem Physiol
December 2024
College of Plant Protection, Southwest University, Chongqing, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), Southwest University, Chongqing, China.
Chitin nanocrystals (ChNCs), known for their high aspect ratio, surface charge, and mobility, are promising bio-based nanomaterials for drug delivery. However, their potential as pesticide carriers in agriculture remains underexplored. Etoxazole, a diphenyl oxalate acaricide, effectively inhibits egg hatching and the normal molting process in mites but suffers from rapid degradation and short persistence in field applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!