Background: Alcohol use disorders (AUDs) and cigarette smoking both increase risk for the development of community-acquired pneumonia (CAP), likely through adverse effects on proximal airway mucociliary clearance and pathogen recognition. Smoking-related alterations on airway gene expression are well described, but little is known about the impact of AUDs. We measured gene expression in human airway epithelial cells (AECs), hypothesizing that AUDs would be associated with novel differences in gene expression that could alter risk for CAP.
Methods: Bronchoscopy with airway brushings was performed in participants with AUDs and controls to obtain AECs. An AUD Identification Test was used to define AUD. RNA was extracted from AECs, and mRNA expression data were collected on an Agilent micro-array. Differential expression analyses were performed on the filtered and normalized data with correction for multiple testing. Enrichment analyses were performed using clusterProfiler.
Results: Expression data from 19 control and 18 AUD participants were evaluated. After adjustment for smoking, AUDs were associated with significant differential expression of 520 AEC genes, including genes for ribosomal proteins and genes involved in protein folding. Enrichment analyses indicated significant differential expression of 24 pathways in AUDs, including those implicated in protein targeting to membrane and viral gene expression. Smoking-associated AEC gene expression differences mirrored previous reports, but differed from those associated with AUDs.
Conclusions: AUDs have a distinct impact on AEC gene expression that may influence proximal airway function independent of smoking. Alcohol-associated alterations may influence risk for CAP through modifying key mechanisms important in protecting proximal airway integrity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484391 | PMC |
http://dx.doi.org/10.1111/acer.14395 | DOI Listing |
iScience
January 2025
Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.
View Article and Find Full Text PDFiScience
January 2025
Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
The regulation of gene expression relies on the coordinated action of transcription factors (TFs) at enhancers, including both activator and repressor TFs. We employed deep learning (DL) to dissect HepG2 enhancers into positive (PAR), negative (NAR), and neutral activity regions. Sharpr-MPRA and STARR-seq highlight the dichotomy impact of NARs and PARs on modulating and catalyzing the activity of enhancers, respectively.
View Article and Find Full Text PDFiScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Department of Dermatology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People's Republic of China.
Dystrophic epidermolysis bullosa (DEB) is a heterogeneous and rare genetic skin disease caused by mutations in the gene, which encodes Type VII collagen. The absence or dysfunction of Type VII collagen can cause the dense lower layer of the basal membrane zone of the skin to separate from the dermis, leading to blister formation and various complications. In different DEB subtypes, the severity of the phenotype is associated, to some extent, with the outcome of Type VII collagen caused by mutations in the gene, which may be reduced in expression, remarkably reduced, or completely absent.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Rheumatism and Immunity, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.
Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease characterized by inflammation of the sacroiliac joints and spine. Cuproptosis is a newly recognized copper-induced cell death mechanism. Our study explored the novel role of cuproptosis-related genes (CRGs) in AS, focusing on immune cell infiltration and molecular clustering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!