A network of intersecting molecular pathways interacts to initiate and execute axon destruction. Maximum protection against axon degeneration likely requires more than manipulation of a single target. Here, we describe the process of designing a high-throughput arrayed screening assay for the identification of key factors responsible for axon destruction and/or protection. First, we go over some existing screens in the literature, then discuss the planning, tracking, analysis, and statistics around such a screening experiment. Prioritization of perturbations may allow laboratories to cost-effectively explore the process of screening. We also present the pairing of a combinatorial drug screen with a machine learning algorithm, predicting how to best modulate neurodegenerative and neuroprotective components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0585-1_6 | DOI Listing |
Spinal Cord
January 2025
McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
Study Design: Experimental Animal Study.
Objective: To continue validating an antibody which targets an epitope of neurofilament light chain (NF-L) only available during neurodegeneration and to utilize the antibody to describe the pattern of axonal degeneration 10 days post-unilateral C4 contusion in the rat.
Setting: University of Florida laboratory in Gainesville, USA.
Bone Res
January 2025
The Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
Osteoarthritis (OA) is a degenerative joint disease accompanied with the loss of cartilage and consequent nociceptive symptoms. Normal articular cartilage maintains at aneural state. Neuron guidance factor Semaphorin 3A (Sema3A) is a membrane-associated secreted protein with chemorepulsive properties for axons.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Ophthalmology, The Second Hospital of Jilin University, Jilin University, Changchun 130000, Jilin, China.
Glaucoma is a neurodegenerative disorder marked by the loss of retinal ganglion cells (RGCs) and axonal degeneration, resulting in irreversible vision impairment. While intraocular pressure (IOP) is presently acknowledged as the sole modifiable risk factor, the sensitivity of RGCs to IOP varies among individuals. Consequently, progressive vision loss may ensue even when IOP is effectively managed.
View Article and Find Full Text PDFLife Sci
December 2024
Department of Rehabilitation Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; The First Clinical Medical College School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Trauma, Burn and Pain Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China. Electronic address:
Aims: This study explores the potential of neuromodulation, specifically transcranial alternating current stimulation (tACS), as a promising rehabilitative therapy in spinal cord injury (SCI).
Main Methods: By meticulously optimizing treatment parameters and durations, our objective was to enhance nerve regeneration and facilitate functional recovery. To assess the efficacy of tACS, our experiments used the rat T10 SCI model.
Mol Neurobiol
December 2024
Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!