Results of intermediate-coupling calculations are given for Zn ii 3 45 and Ag i 4 56. A [(4 ) , (56) ] coupling scheme is appropriate for the latter. New 3 4(D)5 D and 3 4(D)5 D levels were found in Zn ii, and a few other additions and revisions are given for the analysis. The combinations of the new levels 3 (D)44(P°) in Zn ii and 4 (D)55(P°) in Ag i are also listed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6753036 | PMC |
http://dx.doi.org/10.6028/jres.074A.002 | DOI Listing |
Dalton Trans
January 2025
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sun Yat-Sen University, School of Chemistry and Chemical Engineering, 135 West Xingang Road, 510275, Guangzhou, CHINA.
Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Dhanvanthri Laboratory, Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India.
A novel Schiff base ligand (L), bearing NO donor sites, was derived from the condensation of 5-chloromethylisophthaldehyde and phenylpropanolamine (PPA). Mononuclear Co(II), Cu(II), and Zn(II) complexes were synthesized and were characterized by FTIR, UV-Vis, H NMR, ESI-mass spectroscopy, molar conductance, and thermal and electrochemical studies. The thermal investigation revealed that the complexes were stable up to 150-250 °C and began to degrade in stages, resulting in the development of respective metal oxides.
View Article and Find Full Text PDFDalton Trans
January 2025
Organometallics and Materials Chemistry Lab, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
Three 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-thione Zn(II) halide complexes (1-3) and one 1-(anthracene-9-ylmethyl)-3-isopropyl-imidazol-2-selone Zn(II) dichloride complex (4) were synthesized and characterized. Complexes 2, 3, and 4 exhibited distorted tetrahedral geometries, while complex 1 adopted a regular tetrahedral geometry. All these complexes displayed emission in the crystalline state, with complex 3 emitting in the yellow region and complex 1 and 4 in the blue region, while complex 2 gave a bluish-green emission.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Inorganic Chemistry Section, Jadavpur University, Kolkata, 700032, India.
The development of robust, efficient, and cost-effective heterogeneous photocatalysts for visible light-driven CO reduction continues to be a significant challenge in the quest for sustainable energy solutions. As a result, increasing attention is being directed towards the exploration of high-performance photocatalysts capable of converting CO into valuable chemical feedstocks. In context to this, Imidazolate Frameworks Potsdam (IFPs), a class of metal-organic frameworks (MOFs), can be a promising candidate for CO photoreduction due to their ease of synthesis, use of low-cost, earth-abundant metals, and high chemical and thermal stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!