Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigates the x-ray scattering characteristics of microsphere particles in x-ray-grating-based interferometric imaging at different concentrations, bubble sizes and tube voltages (kV). Attenuation (ATI), dark-field (DFI) and phase-contrast (PCI) images were acquired. Signal-to-noise (SNR) and contrast-to-noise ratios with water (CNR) and air as reference (CNR) were determined. In all modalities, a linear relationship between SNR and microbubbles concentration, respectively, microsphere size was found. A significant gain of SNR was found when varying kV. SNR was significantly higher in DFI and PCI than ATI. The highest gain of SNR was shown at 60 kV for all media in ATI and DFI, at 80 kV for PCI. SNR for all media was significantly higher compared to air and was slightly lower compared to water. A linear relationship was found between CNR, CNR, concentration and size. With increasing concentration and decreasing size, CNR and CNR increased in DFI, but decreased in PCI. Best CNR and CNR was found at specific combination of kV and concentration/size. Highest average CNR and CNR was found for microspheres in ATI and PCI, for microbubbles in DFI. Microspheres are a promising contrast-media for grating-based-interferometry, if kV, microsphere size and concentration are appropriately combined.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287139 | PMC |
http://dx.doi.org/10.1038/s41598-020-66395-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!