Cardiovascular diseases are associated to risk factors as obesity, hypertension and diabetes. The transforming growth factor-β1 receptors ALK1 and endoglin regulate blood pressure and vascular homeostasis. However, no studies relate the association of ALK1 and endoglin polymorphisms with cardiovascular risk factors. We analysed the predictive value of the ALK1 and endoglin polymorphisms on cardiovascular target organ damage in hypertensive and diabetic patients in 379 subjects with or without hypertension and diabetes in a Primary Care setting. The ALK1 rs2071219 polymorphism (AA genotype) is associated with a lower presence of diabetic retinopathy and with the absence of altered basal glycaemia. Being carrier of the ALK1 rs3847859 polymorphism (G allele) is associated with lower basal heart rate and with higher LDL-cholesterol levels. The endoglin rs3739817 polymorphism (AA genotype) is associated with higher levels of LDL-cholesterol, and being carrier of the endoglin rs10987759 polymorphism (C allele) is associated with higher haemoglobin levels and with an increased heart rate. Summarizing, several ALK1 and endoglin gene polymorphisms increase the risk of cardiovascular events. The analysis of these polymorphisms in populations at risk, in combination with the determination of other parameters and biomarkers, could implement the diagnosis and prognosis of susceptibility to cardiovascular damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7287057PMC
http://dx.doi.org/10.1038/s41598-020-66238-9DOI Listing

Publication Analysis

Top Keywords

alk1 endoglin
20
endoglin polymorphisms
12
polymorphisms cardiovascular
12
association alk1
8
cardiovascular damage
8
risk factors
8
hypertension diabetes
8
polymorphism genotype
8
genotype associated
8
associated lower
8

Similar Publications

Alk1/Endoglin signaling restricts vein cell size increases in response to hemodynamic cues.

Angiogenesis

December 2024

Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, 1114 Biomedical Research Building, 421 Curie Boulevard, Philadelphia, PA, 19104, USA.

Hemodynamic cues are thought to control blood vessel hierarchy through a shear stress set point, where flow increases lead to blood vessel diameter expansion, while decreases in blood flow cause blood vessel narrowing. Aberrations in blood vessel diameter control can cause congenital arteriovenous malformations (AVMs). We show in zebrafish embryos that while arteries behave according to the shear stress set point model, veins do not.

View Article and Find Full Text PDF

BMP-9 and BMP-10 are TGF-β family signaling ligands naturally secreted into blood. They act on endothelial cells and are required for proper development and maintenance of the vasculature. In hereditary hemorrhagic telangiectasia, regulation is disrupted due to mutations in the BMP-9/10 pathway, namely in the type I receptor ALK1 or the co-receptor endoglin.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary Hemorrhagic Telangiectasia (HHT) is a genetic disorder that causes frequent bleeding in various organs, and diagnosing it can be challenging; researchers investigated exosomes (tiny vesicles) as potential biomarkers for HHT.
  • The study involved analyzing exosomes isolated from the blood of 20 HHT patients and 17 healthy donors, focusing on their protein composition and functional effects on human cells; specific proteins like Thrombospondin-1 were found to be significantly higher in HHT patients' exosomes.
  • Findings suggest that exosomal proteins, particularly Thrombospondin-1 and soluble Endoglin (sENG), could serve as biomarkers for HHT, offering a promising new
View Article and Find Full Text PDF

Evaluation of AAV Capsids and Delivery Approaches for Hereditary Hemorrhagic Telangiectasia Gene Therapy.

Transl Stroke Res

July 2024

Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, University of California, 2540 23Rd Street, Box 1363, San Francisco, CA, 94143, USA.

Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous (i.

View Article and Find Full Text PDF

Nosebleeds and intracranial hemorrhage from brain arteriovenous malformations (bAVMs) are among the most devastating symptoms of patients with hereditary hemorrhagic telangiectasis (HHT). All available managements have limitations. We showed that intravenous delivery of soluble FMS-related tyrosine kinase 1 using an adeno-associated viral vector (AAV9-sFLT1) reduced bAVM severity of deficient mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!