A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phthalate exposure causes browning-like effects on adipocytes in vitro and in vivo. | LitMetric

Mono(2-ethylhexyl)phthalate (MEHP) promotes adipogenesis via PPARγ. PPARγ agonists, e.g., rosiglitazone (RSG), enhance adipocyte browning. However, scientific evidence regarding MEHP as a browning chemical is lacking. This study combined 3T3-L1 adipocytes and C57BL/6J mice to examine the potential roles of MEHP in browning. MEHP and the browning agent RSG caused similar energy metabolism in adipocytes. Both MEHP and RSG caused transcriptional changes involved in browning-associated thermogenesis, energy homeostasis, inflammatory response, and glucose uptake. MEHP-treated adipocytes exhibited brown adipocyte-like characteristics, i.e., increased mitochondrial proton leak, triiodothyronine-induced Bmp8b expression, decreased inflammation, and smaller lipid droplets. Increased PDK4 and PEPCK1 in MEHP/RSG-treated adipocytes could block glucose utilization for mitochondrial respiration. Mitochondrial/peroxisomal biogenesis and fatty acid β-oxidation in MEHP-treated adipocytes were enhanced. Candidate genes in promoting browning of MEHP-treated adipocytes were highlighted. In di(2-ethylhexyl)phthalate (DEHP)-treated mice, transcriptional changes in white adipose tissue (WAT) were associated with adipocyte differentiation, lipid synthesis, carbohydrate uptake, and WAT/brown adipose tissue (BAT) quantity. PPARγ and NR4A1 were predicted as the top two upstream regulators in orchestrating transcriptional changes. DEHP-treated mice exhibited actively expressed browning marker genes (i.e., Pparg, Adrb1, Adrb3, Ppargc1a, and Ucp1) in WAT, increased blood FGF21 levels, and higher amounts of BAT, supporting the browning-like effects in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2020.111487DOI Listing

Publication Analysis

Top Keywords

mehp browning
12
transcriptional changes
12
mehp-treated adipocytes
12
browning-like effects
8
rsg caused
8
dehp-treated mice
8
adipose tissue
8
adipocytes
7
browning
6
mehp
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!