The role of NO in plant response to salt stress: interactions with polyamines.

Funct Plant Biol

Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland; and Corresponding author. Email:

Published: September 2020

Soil salinity is a major abiotic stress that limits plant growth and productivity. High concentrations of sodium chloride can cause osmotic and ionic effects. This stress minimises a plant's ability to uptake water and minerals, and increases Na+ accumulation in the cytosol, thereby disturbing metabolic processes. Prolonged plant exposure to salt stress can lead to oxidative stress and increased production of reactive oxygen species (ROS). Higher plants developed some strategies to cope with salt stress. Among these, mechanisms involving nitric oxide (NO) and polyamines (PAs) are particularly important. NO is a key signalling molecule that mediates a variety of physiological functions and defence responses against abiotic stresses in plants. Under salinity conditions, NO donors increase growth parameters, reduce Na+ toxicity, maintain ionic homeostasis, stimulate osmolyte accumulation and prevent damages caused by ROS. NO enhances salt tolerance of plants via post-translational protein modifications through S-nitrosylation of thiol groups, nitration of tyrosine residues and modulation of multiple gene expression. Several reviews have reported on the role of polyamines in modulating salt stress plant response and the capacity to enhance PA synthesis upon salt stress exposure, and it is known that NO and PAs interact under salinity. In this review, we focus on the role of NO in plant response to salt stress, paying particular attention to the interaction between NO and PAs.

Download full-text PDF

Source
http://dx.doi.org/10.1071/FP19047DOI Listing

Publication Analysis

Top Keywords

salt stress
24
plant response
12
stress
9
role plant
8
response salt
8
salt
7
stress interactions
4
interactions polyamines
4
polyamines soil
4
soil salinity
4

Similar Publications

Unveiling the role of OsSAP17: Enhancing plant resistance to drought and salt.

Plant Physiol Biochem

December 2024

College of Ecology and Environment, Chengdu University of Technology, Sichuan, 610059, China; Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, China; Key Laboratory of Monitoring for Heavy Metal Pollutants, Ministry of Ecology and Environment, Hunan, 410019, China. Electronic address:

With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice.

View Article and Find Full Text PDF

Salt stress disturbs plant growth and photosynthesis due to its toxicity. The ice plant Mesembryanthemum crystallinum is a highly salt-tolerant facultative crassulacean acid metabolism (CAM) plant. However, the genetic basis of the salt tolerance mechanisms in ice plants remains unclear.

View Article and Find Full Text PDF

Vigna marina (Barm.) Merr. is adapted to tropical marine beaches and has an outstanding tolerance to salt stress.

View Article and Find Full Text PDF

Since photosynthesis is highly sensitive to salinity stress, remote sensing of photosynthetic status is useful for detecting salinity stress during the selection and breeding of salinity-tolerant plants. To do so, photochemical reflectance index (PRI) is a potential measure to detect conversion of the xanthophyll cycle in photosystem II. Raphanus sativus var.

View Article and Find Full Text PDF

is an important source of natural β-carotene (containing and isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in under different salt concentrations were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!