A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ERRATUM. | LitMetric

AI Article Synopsis

  • Testing drugs on genetically similar rodent strains may not adequately predict organ toxicity in humans due to genetic diversity; however, advancements in mouse genetics provide potential solutions.
  • In vitro cultures allow for faster and more cost-effective testing of drug compounds and enable researchers to choose animal models that better mimic human responses, particularly for liver function.
  • The development of mouse micropatterned cocultures (mMPCC) shows a significant improvement in sustaining liver function over time, paving the way for better drug toxicity assessments and comparisons to human liver cells, and helps identify genetic factors influencing drug sensitivity.

Article Abstract

Testing drugs in isogenic rodent strains to satisfy regulatory requirements is insufficient for derisking organ toxicity in genetically diverse human populations; in contrast, advances in mouse genetics can help mitigate these limitations. Compared to the expensive and slower in vivo testing, in vitro cultures enable the testing of large compound libraries toward prioritizing lead compounds and selecting an animal model with human-like response to a compound. In the case of the liver, a leading cause of drug attrition, isolated primary mouse hepatocytes (PMHs) rapidly decline in function within current culture platforms, which restricts their use for assessing the effects of longer-term compound exposure. Here we addressed this challenge by fabricating mouse micropatterned cocultures (mMPCC) containing PMHs and 3T3-J2 murine embryonic fibroblasts that displayed 4 weeks of functions; mMPCCs created from either C57Bl/6J or CD-1 PMHs outperformed collagen/Matrigel™ sandwich-cultured hepatocyte monocultures by ∼143-fold, 413-fold, and 10-fold for albumin secretion, urea synthesis, and cytochrome P450 activities, respectively. Such functional longevity of mMPCCs enabled in vivo relevant comparisons across strains for CYP induction and hepatotoxicity following exposure to 14 compounds with subsequent comparison to responses in primary human hepatocytes (PHHs). In conclusion, mMPCCs display high levels of major liver functions for several weeks and can be used to assess strain- and species-specific compound effects when used in conjunction with responses in PHHs. Ultimately, mMPCCs can be used to leverage the power of mouse genetics for characterizing subpopulations sensitive to compounds, characterizing the degree of interindividual variability, and elucidating genetic determinants of severe hepatotoxicity in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7284104PMC
http://dx.doi.org/10.3727/105221620X15886997679754DOI Listing

Publication Analysis

Top Keywords

mouse genetics
8
erratum testing
4
testing drugs
4
drugs isogenic
4
isogenic rodent
4
rodent strains
4
strains satisfy
4
satisfy regulatory
4
regulatory requirements
4
requirements insufficient
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: